Academic literature on the topic 'Systems biology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Systems biology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Systems biology"

1

Bertolaso, Marta, Alessandro Giuliani, and Laura De Gara. "Systems biology reveals biology of systems." Complexity 16, no. 6 (December 22, 2010): 10–16. http://dx.doi.org/10.1002/cplx.20353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caplan, Michael. "Systems Biology and the Biology of Systems." Physiology 25, no. 2 (April 2010): 58. http://dx.doi.org/10.1152/physiol.00010.2010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SLIKKER, WILLIAM, ZENGJUN XU, and CHENG WANG. "Systems Biology/Systems Toxicology." Annals of the New York Academy of Sciences 1053, no. 1 (June 28, 2008): 309–10. http://dx.doi.org/10.1111/j.1749-6632.2005.tb00038.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Edison T. "Systems Biology, Integrative Biology, Predictive Biology." Cell 121, no. 4 (May 2005): 505–6. http://dx.doi.org/10.1016/j.cell.2005.04.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ho, R. L., and C. A. Lieu. "Systems Biology." Drugs in R & D 9, no. 4 (2008): 203–16. http://dx.doi.org/10.2165/00126839-200809040-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lederman, Lynne. "Systems Biology." BioTechniques 37, no. 6 (December 2004): 889–91. http://dx.doi.org/10.2144/04376tn01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krivine, Jean. "Systems biology." ACM SIGLOG News 4, no. 3 (July 28, 2017): 43–61. http://dx.doi.org/10.1145/3129173.3129182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HENRY, CELIA M. "SYSTEMS BIOLOGY." Chemical & Engineering News Archive 83, no. 7 (February 14, 2005): 47–55. http://dx.doi.org/10.1021/cen-v083n007.p047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HENRY, CELIA M. "SYSTEMS BIOLOGY." Chemical & Engineering News Archive 81, no. 20 (May 19, 2003): 45–55. http://dx.doi.org/10.1021/cen-v081n020.p045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ehrenberg, Måns. "Systems Biology." FEBS Letters 583, no. 24 (November 13, 2009): 3881. http://dx.doi.org/10.1016/j.febslet.2009.11.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Systems biology"

1

Xia, Tian. "Network modeling in systems biology." [Ames, Iowa : Iowa State University], 2010. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3403845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Apgar, Joshua Farley. "Experiment design for systems biology." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/61217.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2009.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 219-233).
Mechanism-based chemical kinetic models are increasingly being used to describe biological signaling. Such models serve to encapsulate current understanding of pathways and to enable insight into complex biological processes. Despite the growing interest in these models, a number of challenges frustrate the construction of high-quality models. First, the chemical reactions that control biochemical processes are only partially known, and multiple, mechanistically distinct models often fit all of the available data and known chemistry. We address this by providing methods for designing dynamic stimuli that can distinguish among models with different reaction mechanisms in stimulus-response experiments. We evaluated our method on models of antibody-ligand binding, mitogen-activated protein kinase phosphorylation and de-phosphorylation, and larger models of the epidermal growth factor receptor (EGFR) pathway. Inspired by these computational results, we tested the idea that pulses of EGF could help elucidate the relative contribution of different feedback loops within the EGFR network. These experimental results suggest that models from the literature do not accurately represent the relative strength of the various feedback loops in this pathway. In particular, we observed that the endocytosis and feedback loop was less strong than predicted by models, and that other feedback mechanisms were likely necessary to deactivate ERK after EGF stimulation. Second, chemical kinetic models contain many unknown parameters, at least some of which must be estimated by fitting to time-course data. We examined this question in the context of a pathway model of EGF and neuronal growth factor (NGF) signaling. Computationally, we generated a palette of experimental perturbation data that included different doses of EGF and NGF as well as single and multiple gene knockdowns and overexpressions. While no single experiment could accurately estimate all of the parameters, we identified a set of five complementary experiments that could. These results suggest that there is reason to be optimistic about the prospects for parameter estimation in even large models. Third, there is no standard formulation for chemical kinetic models of biological signaling. We propose a general and concise formulation of mass action kinetics based on sparse matrices and Kronecker products. This formulation allows any mass action model and its partial derivatives to be represented by simple matrix equations, which enabled straightforward application of several numerical methods. We show that models that use other rate laws such as MichaelisMenten can be converted to our formulation. We demonstrate this by converting a model of Escherichia coli central carbon metabolism to use only mass action kinetics. The dynamics of the new model are similar to the original model. However, we argue that because our model is based on fewer approximations it has the potential to be more accurate over a wider range of conditions. Taken together, the work presented here demonstrates that experimental design methodology can be successfully used to improve the quality of mechanism-based chemical kinetic models.
by Joshua Farley Apgar.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

de, Back Walter. "Multicellular Systems Biology of Development." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-209110.

Full text
Abstract:
Embryonic development depends on the precise coordination of cell fate specification, patterning and morphogenesis. Although great strides have been made in the molecular understanding of each of these processes, how their interplay governs the formation of complex tissues remains poorly understood. New techniques for experimental manipulation and image quantification enable the study of development in unprecedented detail, resulting in new hypotheses on the interactions between known components. By expressing these hypotheses in terms of rules and equations, computational modeling and simulation allows one to test their consistency against experimental data. However, new computational methods are required to represent and integrate the network of interactions between gene regulation, signaling and biomechanics that extend over the molecular, cellular and tissue scales. In this thesis, I present a framework that facilitates computational modeling of multiscale multicellular systems and apply it to investigate pancreatic development and the formation of vascular networks. This framework is based on the integration of discrete cell-based models with continuous models for intracellular regulation and intercellular signaling. Specifically, gene regulatory networks are represented by differential equations to analyze cell fate regulation; interactions and distributions of signaling molecules are modeled by reaction-diffusion systems to study pattern formation; and cell-cell interactions are represented in cell-based models to investigate morphogenetic processes. A cell-centered approach is adopted that facilitates the integration of processes across the scales and simultaneously constrains model complexity. The computational methods that are required for this modeling framework have been implemented in the software platform Morpheus. This modeling and simulation environment enables the development, execution and analysis of multi-scale models of multicellular systems. These models are represented in a new domain-specific markup language that separates the biological model from the computational methods and facilitates model storage and exchange. Together with a user-friendly graphical interface, Morpheus enables computational modeling of complex developmental processes without programming and thereby widens its accessibility for biologists. To demonstrate the applicability of the framework to problems in developmental biology, two case studies are presented that address different aspects of the interplay between cell fate specification, patterning and morphogenesis. In the first, I focus on the interplay between cell fate stability and intercellular signaling. Specifically, two studies are presented that investigate how mechanisms of cell-cell communication affect cell fate regulation and spatial patterning in the pancreatic epithelium. Using bifurcation analysis and simulations of spatially coupled differential equations, it is shown that intercellular communication results in a multistability of gene expression states that can explain the scattered spatial distribution and low cell type ratio of nascent islet cells. Moreover, model analysis shows that disruption of intercellular communication induces a transition between gene expression states that can explain observations of in vitro transdifferentiation from adult acinar cells into new islet cells. These results emphasize the role of the multicellular context in cell fate regulation during development and may be used to optimize protocols for cellular reprogramming. The second case study focuses on the feedback between patterning and morphogenesis in the context of the formation of vascular networks. Integrating a cell-based model of endothelial chemotaxis with a reaction-diffusion model representing signaling molecules and extracellular matrix, it is shown that vascular network patterns with realistic morphometry can arise when signaling factors are retained by cell-modified matrix molecules. Through the validation of this model using in vitro assays, quantitative estimates are obtained for kinetic parameters that, when used in quantitative model simulations, confirm the formation of vascular networks under measured biophysical conditions. These results demonstrate the key role of the extracellular matrix in providing spatial guidance cues, a fact that may be exploited to enhance vascularization of engineered tissues. Together, the modeling framework, software platform and case studies presented in this thesis demonstrate how cell-centered computational modeling of multi-scale and multicellular systems provide powerful tools to help disentangle the complex interplay between cell fate specification, patterning and morphogenesis during embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
4

Dhondalay, G. K. R. "Systems biology of breast cancer." Thesis, Nottingham Trent University, 2013. http://irep.ntu.ac.uk/id/eprint/316/.

Full text
Abstract:
Breast cancer, with an alarming incidence rate throughout the globe, has attracted significant investigations to identify disease specific biomarkers. Among these, oestrogen receptor (ER) occupies a central role where overexpression is a prognostic indication for breast cancer. The cross-talk between the responsible contenders of ER-associated genes potentially play an important role in the disease aetiology. Investigation of such cross talk is the focus of this thesis. The development of high throughput technologies such as expression microarrays has paved the way for investigating thousands of genes at a time. Microarrays with their high data volume, multivariate nature and non-linearity pose challenges for analysing using conventional statistical approaches. To combat these challenges, computational researchers have developed machine learning approaches such as Artificial Neural Networks (ANNs). This thesis evaluates ANNs based methodologies and their application to the analysis of microarray data generated for breast cancer cases of differing oestrogen receptor status. Furthermore they are used for network inferencing to identify interactions between ER-associated markers and for the subsequent identification of putative pathway elements. The present thesis shows that it is possible to identify some ER-associated breast cancer relevant markers using ANNs. These have been subsequently validated on clinical breast tumour samples highlighting the promise of this approach. This thesis will also demonstrate the novel application of ANNs in systems biology of ER, PR and Her2. Furthermore in this research, the integration of ER, PR and Her2 systems have been undertaken to represent a broader view of the breast cancer system. Finally, this thesis will discuss the advantages, limitations, potential application and future potential applications of the methods evaluated.
APA, Harvard, Vancouver, ISO, and other styles
5

Veliz-Cuba, Alan A. "The Algebra of Systems Biology." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/28240.

Full text
Abstract:
In order to understand biochemical networks we need to know not only how their parts work but also how they interact with each other. The goal of systems biology is to look at biological systems as a whole to understand how interactions of the parts can give rise to complex dynamics. In order to do this efficiently, new techniques have to be developed. This work shows how tools from mathematics are suitable to study problems in systems biology such as modeling, dynamics prediction, reverse engineering and many others. The advantage of using mathematical tools is that there is a large number of theory, algorithms and software available. This work focuses on how algebra can contribute to answer questions arising from systems biology.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Folch, Fortuny Abel. "Chemometric Approaches for Systems Biology." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/77148.

Full text
Abstract:
The present Ph.D. thesis is devoted to study, develop and apply approaches commonly used in chemometrics to the emerging field of systems biology. Existing procedures and new methods are applied to solve research and industrial questions in different multidisciplinary teams. The methodologies developed in this document will enrich the plethora of procedures employed within omic sciences to understand biological organisms and will improve processes in biotechnological industries integrating biological knowledge at different levels and exploiting the software packages derived from the thesis. This dissertation is structured in four parts. The first block describes the framework in which the contributions presented here are based. The objectives of the two research projects related to this thesis are highlighted and the specific topics addressed in this document via conference presentations and research articles are introduced. A comprehensive description of omic sciences and their relationships within the systems biology paradigm is given in this part, jointly with a review of the most applied multivariate methods in chemometrics, on which the novel approaches proposed here are founded. The second part addresses many problems of data understanding within metabolomics, fluxomics, proteomics and genomics. Different alternatives are proposed in this block to understand flux data in steady state conditions. Some are based on applications of multivariate methods previously applied in other chemometrics areas. Others are novel approaches based on a bilinear decomposition using elemental metabolic pathways, from which a GNU licensed toolbox is made freely available for the scientific community. As well, a framework for metabolic data understanding is proposed for non-steady state data, using the same bilinear decomposition proposed for steady state data, but modelling the dynamics of the experiments using novel two and three-way data analysis procedures. Also, the relationships between different omic levels are assessed in this part integrating different sources of information of plant viruses in data fusion models. Finally, an example of interaction between organisms, oranges and fungi, is studied via multivariate image analysis techniques, with future application in food industries. The third block of this thesis is a thoroughly study of different missing data problems related to chemometrics, systems biology and industrial bioprocesses. In the theoretical chapters of this part, new algorithms to obtain multivariate exploratory and regression models in the presence of missing data are proposed, which serve also as preprocessing steps of any other methodology used by practitioners. Regarding applications, this block explores the reconstruction of networks in omic sciences when missing and faulty measurements appear in databases, and how calibration models between near infrared instruments can be transferred, avoiding costs and time-consuming full recalibrations in bioindustries and research laboratories. Finally, another software package, including a graphical user interface, is made freely available for missing data imputation purposes. The last part discusses the relevance of this dissertation for research and biotechnology, including proposals deserving future research.
Esta tesis doctoral se centra en el estudio, desarrollo y aplicación de técnicas quimiométricas en el emergente campo de la biología de sistemas. Procedimientos comúnmente utilizados y métodos nuevos se aplican para resolver preguntas de investigación en distintos equipos multidisciplinares, tanto del ámbito académico como del industrial. Las metodologías desarrolladas en este documento enriquecen la plétora de técnicas utilizadas en las ciencias ómicas para entender el funcionamiento de organismos biológicos y mejoran los procesos en la industria biotecnológica, integrando conocimiento biológico a diferentes niveles y explotando los paquetes de software derivados de esta tesis. Esta disertación se estructura en cuatro partes. El primer bloque describe el marco en el cual se articulan las contribuciones aquí presentadas. En él se esbozan los objetivos de los dos proyectos de investigación relacionados con esta tesis. Asimismo, se introducen los temas específicos desarrollados en este documento mediante presentaciones en conferencias y artículos de investigación. En esta parte figura una descripción exhaustiva de las ciencias ómicas y sus interrelaciones en el paradigma de la biología de sistemas, junto con una revisión de los métodos multivariantes más aplicados en quimiometría, que suponen las pilares sobre los que se asientan los nuevos procedimientos aquí propuestos. La segunda parte se centra en resolver problemas dentro de metabolómica, fluxómica, proteómica y genómica a partir del análisis de datos. Para ello se proponen varias alternativas para comprender a grandes rasgos los datos de flujos metabólicos en estado estacionario. Algunas de ellas están basadas en la aplicación de métodos multivariantes propuestos con anterioridad, mientras que otras son técnicas nuevas basadas en descomposiciones bilineales utilizando rutas metabólicas elementales. A partir de éstas se ha desarrollado software de libre acceso para la comunidad científica. A su vez, en esta tesis se propone un marco para analizar datos metabólicos en estado no estacionario. Para ello se adapta el enfoque tradicional para sistemas en estado estacionario, modelando las dinámicas de los experimentos empleando análisis de datos de dos y tres vías. En esta parte de la tesis también se establecen relaciones entre los distintos niveles ómicos, integrando diferentes fuentes de información en modelos de fusión de datos. Finalmente, se estudia la interacción entre organismos, como naranjas y hongos, mediante el análisis multivariante de imágenes, con futuras aplicaciones a la industria alimentaria. El tercer bloque de esta tesis representa un estudio a fondo de diferentes problemas relacionados con datos faltantes en quimiometría, biología de sistemas y en la industria de bioprocesos. En los capítulos más teóricos de esta parte, se proponen nuevos algoritmos para ajustar modelos multivariantes, tanto exploratorios como de regresión, en presencia de datos faltantes. Estos algoritmos sirven además como estrategias de preprocesado de los datos antes del uso de cualquier otro método. Respecto a las aplicaciones, en este bloque se explora la reconstrucción de redes en ciencias ómicas cuando aparecen valores faltantes o atípicos en las bases de datos. Una segunda aplicación de esta parte es la transferencia de modelos de calibración entre instrumentos de infrarrojo cercano, evitando así costosas re-calibraciones en bioindustrias y laboratorios de investigación. Finalmente, se propone un paquete software que incluye una interfaz amigable, disponible de forma gratuita para imputación de datos faltantes. En la última parte, se discuten los aspectos más relevantes de esta tesis para la investigación y la biotecnología, incluyendo líneas futuras de trabajo.
Aquesta tesi doctoral es centra en l'estudi, desenvolupament, i aplicació de tècniques quimiomètriques en l'emergent camp de la biologia de sistemes. Procediments comúnment utilizats i mètodes nous s'apliquen per a resoldre preguntes d'investigació en diferents equips multidisciplinars, tant en l'àmbit acadèmic com en l'industrial. Les metodologies desenvolupades en aquest document enriquixen la plétora de tècniques utilitzades en les ciències òmiques per a entendre el funcionament d'organismes biològics i milloren els processos en la indústria biotecnològica, integrant coneixement biològic a distints nivells i explotant els paquets de software derivats d'aquesta tesi. Aquesta dissertació s'estructura en quatre parts. El primer bloc descriu el marc en el qual s'articulen les contribucions ací presentades. En ell s'esbossen els objectius dels dos projectes d'investigació relacionats amb aquesta tesi. Així mateix, s'introduixen els temes específics desenvolupats en aquest document mitjançant presentacions en conferències i articles d'investigació. En aquesta part figura una descripació exhaustiva de les ciències òmiques i les seues interrelacions en el paradigma de la biologia de sistemes, junt amb una revisió dels mètodes multivariants més aplicats en quimiometria, que supossen els pilars sobre els quals s'assenten els nous procediments ací proposats. La segona part es centra en resoldre problemes dins de la metabolòmica, fluxòmica, proteòmica i genòmica a partir de l'anàlisi de dades. Per a això es proposen diverses alternatives per a compendre a grans trets les dades de fluxos metabòlics en estat estacionari. Algunes d'elles estàn basades en l'aplicació de mètodes multivariants propostos amb anterioritat, mentre que altres són tècniques noves basades en descomposicions bilineals utilizant rutes metabòliques elementals. A partir d'aquestes s'ha desenvolupat software de lliure accés per a la comunitat científica. Al seu torn, en aquesta tesi es proposa un marc per a analitzar dades metabòliques en estat no estacionari. Per a això s'adapta l'enfocament tradicional per a sistemes en estat estacionari, modelant les dinàmiques dels experiments utilizant anàlisi de dades de dues i tres vies. En aquesta part de la tesi també s'establixen relacions entre els distints nivells òmics, integrant diferents fonts d'informació en models de fusió de dades. Finalment, s'estudia la interacció entre organismes, com taronges i fongs, mitjançant l'anàlisi multivariant d'imatges, amb futures aplicacions a la indústria alimentària. El tercer bloc d'aquesta tesi representa un estudi a fons de diferents problemes relacionats amb dades faltants en quimiometria, biologia de sistemes i en la indústria de bioprocessos. En els capítols més teòrics d'aquesta part, es proposen nous algoritmes per a ajustar models multivariants, tant exploratoris com de regressió, en presencia de dades faltants. Aquests algoritmes servixen ademés com a estratègies de preprocessat de dades abans de l'ús de qualsevol altre mètode. Respecte a les aplicacions, en aquest bloc s'explora la reconstrucció de xarxes en ciències òmiques quan apareixen valors faltants o atípics en les bases de dades. Una segona aplicació d'aquesta part es la transferència de models de calibració entre instruments d'infrarroig proper, evitant així costoses re-calibracions en bioindústries i laboratoris d'investigació. Finalment, es proposa un paquet software que inclou una interfície amigable, disponible de forma gratuïta per a imputació de dades faltants. En l'última part, es discutixen els aspectes més rellevants d'aquesta tesi per a la investigació i la biotecnologia, incloent línies futures de treball.
Folch Fortuny, A. (2016). Chemometric Approaches for Systems Biology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/77148
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
7

Kirk, Paul. "Inferential stability in systems biology." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6455.

Full text
Abstract:
The modern biological sciences are fraught with statistical difficulties. Biomolecular stochasticity, experimental noise, and the “large p, small n” problem all contribute to the challenge of data analysis. Nevertheless, we routinely seek to draw robust, meaningful conclusions from observations. In this thesis, we explore methods for assessing the effects of data variability upon downstream inference, in an attempt to quantify and promote the stability of the inferences we make. We start with a review of existing methods for addressing this problem, focusing upon the bootstrap and similar methods. The key requirement for all such approaches is a statistical model that approximates the data generating process. We move on to consider biomarker discovery problems. We present a novel algorithm for proposing putative biomarkers on the strength of both their predictive ability and the stability with which they are selected. In a simulation study, we find our approach to perform favourably in comparison to strategies that select on the basis of predictive performance alone. We then consider the real problem of identifying protein peak biomarkers for HAM/TSP, an inflammatory condition of the central nervous system caused by HTLV-1 infection. We apply our algorithm to a set of SELDI mass spectral data, and identify a number of putative biomarkers. Additional experimental work, together with known results from the literature, provides corroborating evidence for the validity of these putative biomarkers. Having focused on static observations, we then make the natural progression to time course data sets. We propose a (Bayesian) bootstrap approach for such data, and then apply our method in the context of gene network inference and the estimation of parameters in ordinary differential equation models. We find that the inferred gene networks are relatively unstable, and demonstrate the importance of finding distributions of ODE parameter estimates, rather than single point estimates.
APA, Harvard, Vancouver, ISO, and other styles
8

Camacho, Diogo Mayo. "In silico cell biology and biochemistry: a systems biology approach." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27960.

Full text
Abstract:
In the post-"omic" era the analysis of high-throughput data is regarded as one of the major challenges faced by researchers. One focus of this data analysis is uncovering biological network topologies and dynamics. It is believed that this kind of research will allow the development of new mathematical models of biological systems as well as aid in the improvement of already existing ones. The work that is presented in this dissertation addresses the problem of the analysis of highly complex data sets with the aim of developing a methodology that will enable the reconstruction of a biological network from time series data through an iterative process. The first part of this dissertation relates to the analysis of existing methodologies that aim at inferring network structures from experimental data. This spans the use of statistical tools such as correlations analysis (presented in Chapter 2) to more complex mathematical frameworks (presented in Chapter 3). A novel methodology that focuses on the inference of biological networks from time series data by least squares fitting will then be introduced. Using a set of carefully designed inference rules one can gain important information about the system which can aid in the inference process. The application of the method to a data set from the response of the yeast Saccharomyces cerevisiae to cumene hydroperoxide is explored in Chapter 5. The results show that this method can be used to generate a coarse-level mathematical model of the biological system at hand. Possible developments of this method are discussed in Chapter 6.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Falin, Lee J. "Systems Uncertainty in Systems Biology & Gene Function Prediction." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26634.

Full text
Abstract:
The widespread use of high-throughput experimental assays designed to measure the entire complement of a cells genes or gene products has led to vast stores of data which are extremely plentiful in terms of the number of items they can measure in a single sample, yet often sparse in the number of samples per experiment due to their high cost. This often leads to datasets where the number of treatment levels or time points sampled is limited, or where there are very small numbers of technical and/or biological replicates. If the goal is to use this data to infer network models, these sparse datasets can lead to under-determined systems. While model parameter variation and its effects on model robustness has been well studied, most of this work has looked exclusively at accounting for variation only from measurement error. In contrast, little work has been done to isolate and quantify the amount of parameter variation caused by the uncertainty in the unmeasured regions of time course experiments. Here we introduce a novel algorithm to quantify the uncertainty in the unmeasured inter- vals between biological measurements taken across a set of quantitative treatments. The algorithm provides a probabilistic distribution of possible gene expression values within un- measured intervals, based on a plausible biological constraint. We show how quantification of this uncertainty can be used to guide researchers in further data collection by identifying which samples would likely add the most information to the system under study. We also present an application of this method to isolate and quantify two distinct sources of model parameter variation. In the concluding chapter we discuss another source of uncertainty in systems biology, namely gene function prediction, and compare several algorithms designed for that purpose.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Uluşeker, Cansu. "A Systems and Synthetic Biology Framework for Regulatory Systems." Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/3207/1/Cansu_Ulu%C5%9Feker_PhD_Thesis.pdf.

Full text
Abstract:
Biological regulatory systems are complex due to their role in living organisms in modulating precise responses to changes in internal and external conditions. In this respect, mathematical models have become essential tools to address their complexity for a better understanding of their mechanisms. The vision here, based on integrating experimental and theoretical techniques, provides a systematic means to quantitatively study the characteristics of the interactions that occur in living organisms. The outcome of such an endeavour should provide insights in terms of predictions and quantifications for further investigations in systems and synthetic biology. In this thesis, we establish an integrated modelling framework that can ensure the interaction of experimental biology with the development of quantitative mathematical descriptions of biological systems. To this end, we develop a framework to simulate and analyse biological regulatory systems by integrating different layers of regulatory information. The work herein presents a biological model development workflow in terms of a step by step approach, highlighting challenges and “real life” problems associated with each stage of model development. In the first part, we have focused on applying systems and synthetic biology modelling tools to the phosphate system at the cellular and genetic levels in Escheria coli. Then, we have analysed the interaction mechanisms and the dynamic behaviour of the phosphate starvation response deactivation and evaluated the role of phosphatase activity. We have investigated how the properties of these signalling systems depend on the network structure. Moreover, we have constructed detailed transcriptional regulatory network models and models for promoter design. In the second part, we have designed a multi-level dynamical set up by providing a novel closed loop whole body model of glucose homeostasis coupled with molecular signalling. We have then developed a system embracing the intracellular metabolic level, the cellular level involving the dynamics of the cells, the organ level, and the processes within the whole body. The output of each model directly has been fed with the variables and the parameters of the next aggregated model. This allowed us to observe the metabolic changes that occur at all levels and monitor inter-level communications for Type 2 Diabetes disease.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Systems biology"

1

Lei, Jinzhi. Systems Biology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73033-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maly, Ivan V., ed. Systems Biology. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-525-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

CASSMAN, MARVIN, ADAM ARKIN, FRANK DOYLE, FUMIAKI KATAGIRI, DOUGLAS LAUFFENBURGER, and CYNTHIA STOKES, eds. Systems Biology. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5468-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rajewsky, Nikolaus, Stefan Jurga, and Jan Barciszewski, eds. Systems Biology. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92967-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nielsen, Jens, and Stefan Hohmann, eds. Systems Biology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527696130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakanishi, Shigetada, Ryoichiro Kageyama, and Dai Watanabe, eds. Systems Biology. Tokyo: Springer Japan, 2009. http://dx.doi.org/10.1007/978-4-431-87704-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prokop, Aleš, and Béla Csukás, eds. Systems Biology. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6803-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Rubeai, Mohamed, and Martin Fussenegger, eds. Systems Biology. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5252-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Katze, Michael G., ed. Systems Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33099-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alberghina, Lila, and H. V. Westerhoff, eds. Systems Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b95175.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Systems biology"

1

Clay, Sylvia M., and Stephen S. Fong. "Systems Biology." In Developing Biofuel Bioprocesses Using Systems and Synthetic Biology, 21–36. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5580-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Telenti, Amalio, and Paul McLaren. "Systems Biology." In Encyclopedia of AIDS, 1–9. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9610-6_29-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sullivan, Rob. "Systems Biology." In Introduction to Data Mining for the Life Sciences, 543–83. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-59745-290-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ruiz-Mirazo, Kepa, and Andrés de la Escosura. "Systems Biology." In Encyclopedia of Astrobiology, 2458–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_5173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marcus, Frederick B. "Systems Biology." In Bioinformatics and Systems Biology, 53–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78353-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pfäffle, Roland W. "Systems Biology." In Yearbook of Pediatric Endocrinology 2006, 77–86. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000094107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chan, Lawrence S., and William C. Tang. "Systems Biology." In Engineering-Medicine, 180–200. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018] | “A Science Publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9781351012270-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nilsson, O., and O. Söder. "Systems Biology." In Yearbook of Pediatric Endocrinology 2007, 175–86. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000104842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiwary, Basant K. "Systems Biology." In Bioinformatics and Computational Biology, 137–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4241-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pühler, Alfred. "Systems biology." In Technology Guide, 174–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88546-7_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Systems biology"

1

Antezana, Erick, Ward Blondé, Aravind Venkatesan, Bernard De Baets, Vladimir Mironov, and Martin Kuiper. "Semantic systems biology." In the International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1988688.1988756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ibrahim, Mohammad K. "A Generic Architectural Framework for Proactive Systems Inspired by Molecular Biology." In 2008 2nd Annual IEEE Systems Conference. IEEE, 2008. http://dx.doi.org/10.1109/systems.2008.4519024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Besozzi, Daniela, Giancarlo Mauri, Dario Pescini, and Claudio Zandron. "Membrane systems in systems biology." In 2008 9th International Workshop on Discrete Event Systems. IEEE, 2008. http://dx.doi.org/10.1109/wodes.2008.4605959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Bioinformatics and computational biology, systems biology and modeling." In 2014 Cairo International Biomedical Engineering Conference (CIBEC). IEEE, 2014. http://dx.doi.org/10.1109/cibec.2014.7020933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Middleton, Richard H. "Systems Biology: The interplay of systems and control research and biology?" In 2009 Chinese Control and Decision Conference (CCDC). IEEE, 2009. http://dx.doi.org/10.1109/ccdc.2009.5195169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Winzeler, Elizabeth A., Serge Batalov, Daniel J. Carucci, Karine G. Le Roch, Yingyao Zhou, Peter L. Blair, Muni Grainger, et al. "Systems biology and malaria." In the eighth annual international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/974614.974627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yurovsky, Alisa. "Session details: Systems biology." In BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3552472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ROEDER, INGO. "SYSTEMS STEM CELL BIOLOGY." In International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708779_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Jake. "Session details: Systems biology." In ISB '10: International Symposium on BioComputing. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/3250322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barat, Suryasarathi, Avishek Das, and Durjoy Majumder. "Systems biology markup language for cancer system." In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009. http://dx.doi.org/10.1109/nabic.2009.5393652.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Systems biology"

1

Kastenhofer, Karen, ed. Systems Biology: Science or Technoscience? Vienna: self, 2020. http://dx.doi.org/10.1553/ita-pa-kk_20_01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chakraborty, Srijani. Promises and Challenges of Systems Biology. Nature Library, October 2020. http://dx.doi.org/10.47496/nl.blog.09.

Full text
Abstract:
Modern systems biology is essentially interdisciplinary, tying molecular biology, the omics, bioinformatics and non-biological disciplines like computer science, engineering, physics, and mathematics together.
APA, Harvard, Vancouver, ISO, and other styles
3

Grego, Sonia, Edward R. Dougherty, Francis J. Alexander, Scott S. Auerbach, Brian R. Berridge, Michael L. Bittner, Warren Casey, et al. Systems Biology for Organotypic Cell Cultures. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1313549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holmes, Philip. Nonlinear Dynamical Systems in Mechanics and Biology. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada299148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Zuyi. Systems Biology of Glucocorticoids in Muscle Disease. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada548681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Professor Andrew Murray. Sixth International Conference on Systems Biology (ICSB 2005). Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/909148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Peter P. Immunology, Systems Biology, and Immunotherapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada485652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saunders, Michael. Numerical Optimization Algorithms and Software for Systems Biology. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1107780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palsson, Bernhard O., Ali Ebrahim, and Steve Federowicz. The OME Framework for genome-scale systems biology. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1169326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruffing, Anne, Travis J. Jensen, Lucas Marshall Strickland, Stephen Meserole, and David Tallant. Systems-Level Synthetic Biology for Advanced Biofuel Production. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1177597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography