Dissertations / Theses on the topic 'Systèmes port-Hamiltoniens'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Systèmes port-Hamiltoniens.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Medianu, Silviu. "Identification des systèmes hamiltoniens à ports." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT116/document.
Full textThe objective of this thesis is to develop a specific identification theory for Port Controlled Hamiltonian (PCH) systems. The main reasons to develop this theory comes from their remarkable properties like power conservation and stability under power preserving interconnection (e.g. parallel, series or feedback interconnections). In a first part PCH systems are analysed for structural identifiability using some classical or new techniques: observability/controllability identifiability, direct test, power series expansion or a new power energy approach, defining also a new concept of port identifiability. Further it is proposed a perturbation model by means of the interaction port together with a practical identifiability analysis realized using the controllability and observability concepts. The fourth part presents a new framework for time-discretization of PCH systems in the nonlinear or linear case, by combined discretization of the flows and efforts preserving in the same time their characteristic properties. Also in this part it is proposed a discretization error Hamiltonian to distinguish the continuous-time PCH system from the discrete-time one. The fifth part of the thesis makes an analysis of PCH systems identifiability using the subspace identification approach in the deterministic case, proposing also a new power energy approach in direct connection with the structural identifiability results. In the end are presented the main conclusions, personal contributions and perspectives for future work
Ponce, Cristobal. "Port-Hamiltonian modeling, discretization and shape control of multidimensional flexible mechanical systems." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD061.
Full textThis thesis addresses the modeling, discretization, and shape control of flexible mechanical systems within the Port-Hamiltonian Systems (PHS) framework. The contributions are threefold. First, we propose generalized methodologies for modeling both linear and nonlinear multidimensional mechanical systems using the generalized extended Hamilton's principle, providing explicit and implicit PHS representations. Second, we develop structure-preserving discretization techniques via mixed Finite Element Methods (FEM), including two, three, and four-field approaches tailored to linear and nonlinear PHS and PH-DAE systems. Finally, we introduce a finite-dimensional controller based on low-order approximations of large-scale discretized linear PHS. This controller ensures convergence to the optimal shapes, offering the best approximation to the desired configurations, while guaranteeing asymptotic stability of the large-scale discretized system
Ramirez, Estay Hector. "Commande de systèmes thermodynamiques irréversibles utilisant les systèmes Hamiltoniens à port définis sur des pseudo-crochets de Poisson et des structures de contact." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00866011.
Full textYaghi, Mohammed. "Phase Field Modeling of Water Solidification : A Port-Hamiltonian Approach." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10198.
Full textThis thesis presents a study on modeling, formulating, and discretizing solidification processes using the Port Hamiltonian framework combined with the phase field approach. The goal is to provide numerical models suitable for simulating, designing, and controlling such processes. It addresses the challenges of representing and controlling phase change phenomena in distributed parameter models with moving interfaces, with a particular focus on the solidification of pure water. The work has been motivated by the development of green processes for water purification technologies such as cyclic melt and crystallization of water, which offer a low-energy solution while minimizing the use of hazardous materials. The first chapter recalls briefly the physical models of multiphase systems and the description of the interface between the phases, in terms of thin or diffuse interfaces. It presents the phase field theory and the associated thermodynamical models of the multiphase systems. Finally, it expresses the dynamics of solidification processes as a coupled system of evolution equations consisting of the Allen-Cahn equation and energy balance equations. A main contribution of this chapter consists in a comprehensive presentation of solidification using the entropy functional approach within the phase field framework. In the second chapter, the Port Hamiltonian formulation of the dynamics of solidification processes using the phase field approach is developed. This chapter introduces Boundary Port Hamiltonian Systems and shows how an extension of the state space to the gradient of the phase field variable leads to a Port Hamiltonian formulation of the solidification model. The model is written in such a way that it utilizes the available thermodynamic data for liquid water and ice, allowing for a detailed and physically-based modeling, leading to an implicit Boundary Port Hamiltonian model. The final chapter focuses on the structure-preserving discretization of the solidification process using the Partitioned Finite Element Method. This ensures that the discretized model retains the Port Hamiltonian structure and, in turn, the key properties such as energy conservation and passivity. The chapter covers weak formulations, projections, and discrete Hamiltonians for the heat equation and the Allen-Cahn equation, leading to the spatial discretization of the solidification model. The principal contribution of this chapter lies in the discretization methodology applied to the implicit Port Hamiltonian model of the solidification process using entropy as the generating function. Overall, this thesis provides structured models of solidification processes using the Port Hamiltonian framework, providing a foundation for their physics-based simulation and control and for future research and development in distributed parameter systems with moving interfaces, particularly for environmental and chemical engineering applications
Ramirez, Estay Hector. "Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10033/document.
Full textThis doctoral thesis presents results on the use of port Hamiltonian systems (PHS) and controlled contact systems for modeling and control of irreversible thermodynamic processes. Firstly, Irreversible PHS (IPHS) has been defined as a class of pseudo-port Hamiltonian system that expresses the first and second principle of Thermodynamics and encompasses models of heat exchangers and chemical reactors. These IPHS have been lifted to the complete Thermodynamic Phase Space endowed with a natural contact structure, thereby defining a class of controlled contact systems, i.e. nonlinear control systems defined by strict contact vector fields. Secondly, it has been shown that only a constant control preserves the canonical contact structure, hence a structure preserving feedback necessarily shapes the closed-loop contact form. The conditions for state feedbacks shaping the contact form have been characterized and have lead to the definition of input-output contact systems. Thirdly, it has been shown that strict contact vector fields are in general unstable at their zeros, hence the condition for the the stability in closed-loop has been characterized as stabilization on some closed-loop invariant Legendre submanifolds
Romero, Velázquez José Guadalupe. "Commande robuste par façonnement d’énergie de systèmes non-linéaires." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112019/document.
Full textThis thesis focuses on the design of robust control for nonlinear systems, mainly on mechanical systems. The results presented are to two situations widely discussed in control theory: 1) The stability of nonlinear systems disturbed; 2) The global tracking trajectory in mechanical systems having only knowledge of the position. We started giving a design method of robust controls to ensure regulation on non-passive output. In addition, if the system is perturbed (constant unmatched), rigorous proof to its rejection is provided. This result is based mainly on change of coordinates and integral dynamic control. When the scenario to deal are mechanical systems with time-varying matched and unmatched, disturbance, the system is endowed with strong properties as IISS (Integral Input-State Stable) and ISS (Input-State Stable). This is achieved based on the design method to rejection of constant disturbances (unmatched). However, due to the nonlinearity of the system, the controllers have a high complexity. For the same problem, a second and elegant result is given making a initial change of coordinate on the momenta variable, such that the controller significantly simplifies, preserving the aforementioned robustness properties. Finally, a convincing answer to the problem of global exponential tracking of mechanical systems is given taking into account only the position information. We solve this problem in two steps. First, some slight variation is presented to the proof of stability of a speed observer based on Immersion and Invariance theory recently published. Note that this is a speed observer satisfying the exponential convergence speed in mechanical systems. Secondly, and based on the change of coordinates (momenta), a globally exponentially stable tracking controller with position and velocity known is proposed. The combination of both results give the first global exponential tracking controller of mechanical systems without velocity measurements
Romero, Velázquez José Guadalupe. "Commande robuste par façonnement d'énergie de systèmes non-linéaires." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00797371.
Full textTrenchant, Vincent. "Discrétisation et commande frontière de systèmes vibro-acoustiques, une approche hamiltonienne à ports." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD066/document.
Full textThis thesis deals with the boundary control of an acoustic by a network of co-localised sensors/actuators which constitutes a smart skin. In order to cope with this multiphysical problem, we chose to place our study in the framework of port-Hamiltonian systems, a structured approach based on the representation of energy exchanges between different energy domains between different systems of subsystems. We proposed a port-Hamiltonian model of the wave equation interconnected through its boundary to the distributed actuation system, which corresponds to a 2D formulation of the physical problem. We developed a spatial discretization method based on the use of finite differences on several staggered grids that preserve the port-Hamiltonian structure of the wave equation. This method also permits to easily interconnect the discretized system with other subsystems, which is convenient for instance for control purposes. Its main advantage over other structure preserving methods is its simplicity of implementation which stems from the use of finite differences. In order to control the vibro-acoustic system, we proposed a control law synthesis method for systems governed by two conservation laws in 1D. The originality of this method lies in the fact that it relies on the computation of structural invariants (Casimir functions) exploited in order to modify the structure of the system in closed loop. The conditions of application of these laws on a 2D system are studied and numerical results validate the synthesized control laws
Chera, Catalin-Marian. "Contribution à l'extension de l'approche énergétique à la représentation des systèmes à paramètres distribués." Phd thesis, Ecole Centrale de Lille, 2009. http://tel.archives-ouvertes.fr/tel-00578842.
Full textDiagne, Mamadou Lamine. "Modelling and control of systems of conservation laws with a moving interface : an application to an extrusion process." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10098/document.
Full textThis thesis is devoted to the analysis of Partial Differential Equations (PDEs) which are coupled through a moving interface. The motion of the interface obeys to an Ordinary Differential Equation (ODE) which arises from a conservation law. The first part of this thesis concerns the modelling of an extrusion process based on mass, moisture content and energy balances. These balances laws express heat and homogeneous material transport in an extruder by hyperbolic PDEs which are defined in complementary time-varying domains. The evolution of the coupled domains is given by an ODE which is derived from the conservation of mass in an extruder. In the second part of the manuscript, a mathematical analysis has been performed in order to prove the existence and the uniqueness of solution for such class of systems by mean of contraction mapping principle. The third part of the thesis concerns the transformation of an extrusion process mass balance equations into a particular input delay system framework using characteristics method. Then, the stabilization of the moving interface by a predictor-based controller has been proposed. Finally, an extension of the analysis of moving interface problems to a particular class of systems of conservations laws has been developed. Port-Hamiltonian formulation of systems of two conservation laws defined on two complementary time-varying intervals has been studied. It has been shown that the coupled system is a port-Hamiltonian system augmented with two variables being the characteristic functions of the two spatial domains
Cardoso-Ribeiro, Flávio Luiz. "Modélisation et commande d’interaction fluide-structure sous forme de système Hamiltonien à ports : Application au ballottement dans un réservoir en mouvement couplé à une structure flexible." Thesis, Toulouse, ISAE, 2016. http://www.theses.fr/2016ESAE0039/document.
Full textThis thesis is motivated by an aeronautical issue: the fuel sloshing in tanksof very flexible wings. The vibrations due to these coupled phenomena can lead to problemslike reduced passenger comfort and maneuverability, and even unstable behavior. Thisthesis aims at developing new models of fluid-structure interaction based on the theory ofport-Hamiltonian systems (pHs). The pHs formalism provides a unified framework for thedescription of complex multi-physics systems and a modular approach for the coupling ofsubsystems thanks to interconnection ports. Furthermore, the design of controllers using pHsmodels is also addressed. PHs models are proposed for the equations of liquid sloshing based on 1D and 2D SaintVenant equations and for the equations of structural dynamics. The originality of the workis to give pHs models of sloshing in moving containers. The interconnection ports are used tocouple the sloshing dynamics to the structural dynamics of a beam controlled by piezoelectricactuators. After writing the partial differential equations of the coupled system using thepHs formalism, a finite-dimensional approximation is obtained by using a geometric pseudospectralmethod that preserves the pHs structure of the infinite-dimensional model at thediscrete level. The thesis proposes several extensions of the geometric pseudo-spectral method,allowing the discretization of systems with second-order differential operators and with anunbounded input operator. Experimental tests on a structure made of a beam connected to atank were carried out to validate both the pHs model of liquid sloshing in moving containersand the pseudo-spectral semi-discretization method. The pHs model was finally used to designa passivity-based controller for reducing the vibrations of the coupled system
Liu, Ning. "Modélisation Hamiltonienne à ports et commande distribuée de structures flexibles : application aux endoscopes biomédicaux à actionneurs à base de polymère électro-actif." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD054.
Full textThis thesis deals with the multiphysical modeling and the distributed control of flexible structures actuated by Ionic Polymer Metal Composite (IPMC) actuators. We firstly propose a model for the IPMC actuator using infinite dimensional port-Hamiltonian formulations in order to tackle the multiphysical and multiscale couplings. Lagrange multipliers are used to handle the mechanical constraints appearing in the actuator. The mechanical structure of the flexible structure is then modeled in 1D with beam models and in 2D with a thin shell model. Secondly, two structure preserving discretization methods are presented and extended to infinite dimensional dissipative port-Hamiltonian system with distributed input. The proposed IPMC actuator model is then discretized using the structure preserving finite differences method on staggered grids and validated on experimental data. Thirdly, we propose an in-domain distributed control law on a simplified model i.e. the vibrating string actuated with patches, that allows to shape the total energy of the system and to inject damping in order to stabilize the overall system with predefined performances
Pham, Thanh Hung. "Commande optimale sous contraintes pour micro-réseaux en courant continu." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT086/document.
Full textThe goals of this thesis is to propose modelling and control solutions for the optimal energy management of a DC microgrid under constraints. The studied microgrid system includes electrical storage units (e.g., batteries, supercapacitors), renewable sources (e.g., solar panels) and loads (e.g., an electro-mechanical elevator system). These interconnected components are linked to a three phase electrical grid through a DC bus and associated DC/AC converters. The optimal energy management is usually formulated as an optimal control problem which takes into account the system dynamics, cost, constraints and reference profiles.An optimal energy management for the microgrid is challenging with respect to classical control theories. Needless to say, a DC microgrid is a complex system due to its heterogeneity, distributed nature (both spatial and in sampling time), nonlinearity of dynamics, multi-physic characteristics, the presence of constraints and uncertainties. Moreover, the power-preserving structure and the energy conservation of a microgrid are essential for ensuring a reliable operation.This challenges are tackled through the combined use of port-Hamiltonian formulations, differential flatness, and economic Model Predictive Control.The Port-Hamiltonian formalism allows to explicitly describe the power-preserving structure and the energy conservation of the microgrid and to connect different components of different physical natures through the same formalism. The strongly non-linear system is then translated into a flat representation. Taking into account differential flatness properties, reference profiles are generated such that the dissipated energy and various physical constraints are taken into account. Lastly, we minimize the purchasing/selling electricity cost within the microgrid using the economic Model Predictive Control with the Port-Hamiltonian formalism on graphs.The proposed control designs are validated through simulation results
Gibart, Jules. "Non-linear stability of a liquid propelled rocket engine in closed loop regulation." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST110.
Full textWith the development of reusable rocket engines, the operating requirements of the various components in an engine have significantly increased. While a non-reusable engine was designed for a limited number of operating points, a reusable engine must meet requirements over a wide range of points to perform complex maneuvers. Consequently, rocket engine control laws have evolved similarly, with the introduction of closed-loop control laws. Although many studies have been conducted on control laws, few works focus on the stability of the engine in closed-loop control. In this context, the objective of this work is to propose a demonstration of the stability of a rocket engine model, as well as a controller that guarantees the stability of the model. First, a model of a liquid propelled rocket engine is proposed under a state-space form. Although more common, this type of modeling does not allow for an easy stability analysis due to its highly nonlinear terms. In this context, the use of a Lyapunov function proves to be cumbersome, and a reformulation of the model is considered, in the form of a Port-Hamiltonian model, more suited for stability analysis of the system. A second chapter introduces the concept of the Port-Hamiltonian model. This type of model highlights the energy transfers that occur between the various components of a system and is built with a fixed geometric structure. These characteristics allow for a direct study of the passivity of a system, a tool for stability analysis the stability. The reformulation allows for the identification of a characteristic function of a Port-Hamiltonian system, the Hamiltonian function, which can be used to prove the passivity of a system and can be formulated as a Lyapunov function. This demonstration provides stability conditions for the system as well as the controller applied in the closed-loop system. In cases where a direct demonstration of passivity is not possible, a controller can be constructed to ensure the passivity of the closed-loop system. To endow the rocket engine model with passivity properties, the third chapter presents passivity-based control (PBC) theory. The principle of such a controller is to ensure the stability of a system by making the closed-loop system passive. Coupled with Port-Hamiltonian systems theory, however, this controller also allows for modification of the Hamiltonian geometric structure to reformulate a system into Port-Hamiltonian form. This controller makes the system passive around a desired operating point, which can be changed over time. Thus, this controller enables trajectory tracking with passivity guarantees over time. The fourth chapter proposes a different approach to establish a stabilizing controller using contraction theory. The contraction property of a system indicates its ability to rapidly converge towards a reference trajectory. This property represents a form of exponential stability, which is more robust than stability through passivation. Moreover, the controller can be easily implemented by solving linear matrix inequalities. Finally, the results of this work are presented through simulations on MATLAB Simulink, allowing for conclusions on the various controllers presented. A simple proportional-integralderivative (PID) controller is constructed for comparison. The results show that the designed controllers offer stabilizing properties, while the PID controller is unstable in certain operating regions. The passivity-based controller extends the stability domain of the system, and the contraction-based controller prevents the system from leaving the stability domain of the original system
Zhou, Weijun. "Approche thermodynamique pour la commande d’un système non linéaire de dimension infinie : application aux réacteurs tubulaires." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10084/document.
Full textThe main objective of this thesis consists to investigate the problem of modelling and control of a nonlinear parameter distributed thermodynamic system : the tubular reactor. We address the control problem of this non linear system relying on the thermodynamic properties of the process. This approach requires to use the classical extensive variables as the state variables. We use the thermodynamic availability as well as the reduced thermodynamic availability (this function is formed from some terms of the thermodynamic availabilty) as Lyapunov functions in order to asymptotically stabilize the tubular reactor aroud a steady profile. The distributed temperature of the jacket is the control variable. Some simulations illustrate these results as well as the eficiency of the control in presence of perturbations. Next we study the Port Hamiltonian representation of irreversible infinite dimensional systems. We propose a Stokes-Dirac structure of a reaction-diffusion system by means of the extension of the vectors of the flux and effort variables. We illustrate this approach on the example of the reaction-diffusion system. For this latter we use the internal energy as well as the opposite of the entropy to obtain Stokes-Dirac structures. We propose also a pseudo-Hamiltonian representation for the two Hamiltonians. Finally we tackle the boundary control problem. The objective is to study the existence of solutions associated to a linearized model of the tubular reactor controlled to the boundary
Perodou, Arthur. "Frequency design of passive electronic filters : a modern system approach." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC046.
Full textThe current explosion of communicating devices (smartphones, drones, IoT...), along with the ever-growing data to be transmitted, produces an exponential growth of the radiofrequency bands. All solutions devised to handle this increasing demand, such as carrier aggregation, require to synthesise frequency filters with stringent industrial requirements (performance, energy consumption, cost ...). While the technology of acoustic wave (AW) resonators, that seem to be the only passive micro-electronic components available to fulfil these requirements, is mature, the associate design problem becomes dramatically complex. Traditional design methods, based on the intuition of designers and the use of generic optimisation algorithms, appear very limited to face this complexity. Thus, systematic and efficient design methods need to be developed. The design problem of AW filters happens to be an instance of the more general design problem of passive electronic filters, that played an important role in the early development of Linear Control and System theory. Systematic design methods were developed in particular cases, such as for LC-ladder filters, but do not enable to tackle the case of AW filters. Our aim is then to revisit and generalise these methods using a modern System approach, in order to develop systematic and efficient design methods of passive electronic filters, with a special focus on AW filters. To achieve this, the paradigm of convex optimisation, and especially the sub-class of Linear Matrix Inequality (LMI) optimisation, appears for us a natural candidate. It is a powerful framework, endowed with efficient solvers, able to optimally solve a large variety of engineering problems in a low computational time. In order to link the design problem with this framework, it is proposed to use modern tools such as the Linear Fractional Transformation (LFT) representation and a mathematical characterisation coming from Dissipative System theory. Reviewing the different design methods, two design approaches stand out. The first approach consists in directly tuning the characteristic values of the components until the frequency requirements are satisfied. While very flexible and close to the original problem, this typically leads to a complex optimisation problem with important convergence issues. Our first main contribution is to make explicit the sources of this complexity and to significantly reduce it, by introducing an original representation resulting from the combination of the LFT and the Port-Hamiltonian Systems (PHS) formalism. A sequential algorithm based on LMI relaxations is then proposed, having a decent convergence rate when a suitable initial point is available. The second approach consists of two steps. First, a transfer function is synthesised such that it satisfies the frequency requirements. This step is a classical problem in Control and Signal Processing and can be efficiently solved using LMI optimisation. Second, this transfer function is realised as a passive circuit in a given topology. To this end, the transfer function needs to satisfy some conditions, namely realisation conditions. The issue is to get them with a convex formulation, in order to keep efficient algorithms. As this is generally not possible, an idea is to relax the problem by including common practices of designers. This leads to solve some instances of a general problem denoted as frequency LFT filter synthesis. Our second main contribution is to provide efficient synthesis methods, based on LMI optimisation, for solving these instances. This is achieved by especially generalising the spectral factorisation technique with extended versions of the so-called KYP Lemma. For particular electronic passive filters, such as bandpass LC-ladder filters, this second approach allows to efficiently solve the design problem. More generally, it provides an initial point to the first approach, as illustrated on the design of a particular AW filter
Pang, Shengzhao. "Contribution to Stability Analysis and Stabilization of DC Microgrids : Application of the Concept of Passivity." Electronic Thesis or Diss., Université de Lorraine, 2020. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2020_0121_PANG.pdf.
Full textThis dissertation focuses on dealing with the stability issues of DC microgrids, especially in electrified transportation applications. The main objective of this dissertation is to solve problems and find improvements related to the stability analysis and stabilization of DC microgrids. In the applications under consideration, stability is still a key issue in the design of DC microgrids. These systems, mainly consisting of multiple cascaded and/or parallel converters and LC filters, can suffer from instability, even when individual converters are stable alone. Moreover, DC microgrids in electrified transportation applications may have a time-varying structure, with highly flexible subsystems and operating modes. Both sources and loads can switch their operation patterns, or even join or quit the microgrid in a plug-and-play manner. This feature makes it difficult to conduct the stability studies, and puts forward higher requirements for controller design. To consider the aforementioned issues, the concept of passivity is studied in this dissertation. Indeed, the general stability study is established using the passivity concept which ensures that a microgrid is stable as long as all its components meet the passivity conditions and are interconnected to each other under certain conditions. In this way, the stabilization objective is localized to avoid investigating the whole microgrid, thereby offering immunity against system variations. Initially, a branch of Passivity-Based Control (PBC), i.e. the Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC), is applied to two typical DC/DC converters. This is achieved by designing an adaptive interconnection matrix to establish internal links in Port-Controlled Hamiltonian (PCH) models and to generate a unique control law. Then, the stabilization of DC microgrids is achieved by developing a modified IDA-PBC at the subsystem level. The instability effects caused by the LC filter, and also caused by the interaction between subsystems are taken into account in the controller design. Moreover, a nonlinear observer is added to the PBC controller to solve the effect caused by parameter and model uncertainties. Afterward, a passivation strategy is proposed to stabilize DC microgrids. This is achieved by developing a PBC controller that preserves the passivity property from the interconnection perspective. All the proposed PBC theory and estimation technology can guarantee the large-signal stability of the DC microgrid. In addition to these theoretical backgrounds, the proposed control methods are validated by extensive simulation, experimental, and Hardware-in-the-loop (HIL) results