Contents
Academic literature on the topic 'Système robotique modulaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Système robotique modulaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Système robotique modulaire"
Hillam, Lom Messan, Fabrice Kordon, and Laure Petrucci. "Application des méthodes formelles à la robotique modulaire. Méthodes formelles pour l'analyse des robots autonomes et modulaires." Journal Européen des Systèmes Automatisés 42, no. 4 (May 19, 2008): 459–78. http://dx.doi.org/10.3166/jesa.42.459-478.
Full textDissertations / Theses on the topic "Système robotique modulaire"
Hermann, Gilles. "Approche neuromimétique modulaire pour la commande d'un système robot-vision." Phd thesis, Université de Haute Alsace - Mulhouse, 2004. http://tel.archives-ouvertes.fr/tel-00203857.
Full textAsservissement visuel par apprentissage
Les mouvements d'un bras robotique sont contrôlés par asservissement visuel. Les informations sont fournies par deux caméras montées sur une tête robotique. La position de chaque objet est alors définie par ses coordonnées dans les images -- gauches et droites -- et par les positions angulaires des caméras.
L'approche classique de l'asservissement visuel se base sur une modélisation mathématique du système robot-vision. Un contrôle précis exige une bonne connaissance des différents paramètres des modèles et une prise en compte des erreurs de calibration des capteurs et du robot. Dans cette thèse, nous évaluons une approche alternative à l'approche modèle et proposons une approche non paramétrique qui "apprend" la transformation reliant l'espace des images à l'espace des commandes angulaires à l'aide de réseaux de neurones artificiels.
Les réseaux de neurones
Les réseaux de neurones se sont révélés être de très bons estimateurs. La complexité de notre tâche, notamment sa dimensionalité et ses caractéristiques non linéaires, rend leur implémentation non triviale. En effet, il est difficile de superviser l'apprentissage des réseaux de grandes tailles. De plus, les temps d'apprentissage et de réponse peuvent devenir prohibitifs.
Le choix du réseau de neurones a été guidé par la nécessité d'un apprentissage en ligne, en temps réel, stable, et rapide. Nous avons retenu les cartes auto-organisatrices de Kohonen (SOM, pour Self Organizing Map) qui répondent à ces contraintes. Les notions de compétition entre neurones et de voisinage qu'elles impliquent permettent un apprentissage rapide et efficace. Des variantes ont été développées, comme la carte de Kohonen étendue. Associées à des ADALINEs (ADAptative LINear Elements), ces cartes fournissent des sorties linéaires. Elles sont donc capables de discrétiser n'importe quel espace (notamment le volume de travail du robot) et de le linéariser sans connaissance a priori.
La modularité
Face à ce problème de dimensionnalité, nous proposons de décomposer la tâche en modules. Chacun de ces modules est alors constitué de réseaux de neurones de faibles dimensions. La modularité peut être vue de deux manières différentes.
La première approche met plusieurs modules en parallèle. Chacun de ceux-ci reçoit les mêmes entrées et calcule une sortie. Un module supplémentaire, un superviseur, est ajouté à l'architecture. Il reçoit les mêmes entrées et a pour rôle de sélectionner le module, ou l'ensemble de modules pondérés de manière convenable, afin d'obtenir la meilleure sortie possible.
La seconde approche, que nous avons adoptée, décompose la tâche complexe en une série de sous-problèmes. Comme l'apprentissage de chaque module nécessite un jeu d'apprentissage, la difficulté est de superviser les modules internes. En effet, les entrées et les sorties désirées de ces modules ne sont pas accessibles. Il est de ce fait nécessaire d'utiliser des structures d'aide à l'apprentissage telles que la bidirectionnalité. Des modules supplémentaires, spécialisés dans l'estimation de ces grandeurs intermédiaires, sont alors insérés dans l'architecture modulaire.
Les résultats
L'apprentissage modulaire proposé peut alors être considéré comme un contrôleur neuromimétique. L'asservissement visuel est validé en simulation avec un robot trois axes et quatre axes. L'objectif est la poursuite de cibles mobiles dans un espace tridimensionnel, sans utiliser le modèle du système défini au préalable et sans connaissance a priori, ni sur les mouvements de la cible, ni sur les mouvements des caméras.
L'approche modulaire a été validée en simulation. Nous avons montré dans ce travail que l'apprentissage modulaire est possible et efficace. Face à des tâches complexes, où l'apprentissage par un réseau unique est difficile, voire même impossible, l'apprentissage modulaire apporte une solution.
Kara, Reda. "Une Approche modulaire du réseau de neurones CMAC pour la commande d'un système robot-vision." Mulhouse, 2002. http://www.theses.fr/2002MULH0704.
Full textThe work of this thesis investigates artificial neural networks capabilities to estimate robotic functions, and their performances as controllers. We propose an adaptive visual servoing scheme based on the CMAC ("Cerebellar Model Articulation Controller") network. The CMAC network is thus well suited for robot control but in practice there are two drawbacks: its output is "discrete" and its precision depends on its size. Thus, we have developed two modular neural : the HCMAC ("Hierarchical CMAC") and the AL_CMAC ("Adaptive Linear CMAC"). These two networks are a combination of networks of small size. The efficiency of the HCMAC and AL_CMAC neuro-controller is validated through visual servoing experiments with a three degrees of freedom robot arm and with a two camera vision system. Visual servoing experiments consist in positioning tasks and in tracking mobile objects. The performances are compared to other neuro-controllers like CMAC and SSOM ("Supervised Self-Organizing Maps") networks
Zhu, Li. "A distributed modular self-reconfiguring robotic platform based on simplified electro-permanent magnets." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30060.
Full textA distributed modular self-reconfiguring robotic (MSRR) system is composed of many repeated basic modules with certain functions of motion, perception, and actuation. They can adapt to environment and goals by connecting and disconnecting to achieve the desired configuration and shape. MSRRs often contain two hardware systems: one is for actuation (motion), another one is for connection. At present time many institutions work on MSRRs; structural design, miniaturization, energy saving, control algorithms have been the focus of research in this area. However, only a few of them work on both the hardware and the corresponding algorithms. This thesis describes the design, fabrication, experimental results, distributed algorithm, and simulator of a MSRR platform. Via theoretical calculation and numerical simulation, we present the simplified electro-permanent (SEP) magnet which can change the magnetic field direction and does not require energy consumption while connected. A new concept of linear motor based on SEP is proposed. Then we construct DILI, a cubical MSRR, the length of each module is 1.5cm. DILI module can slide on a flat surface; the maximum speed can reach 20mm/s. With the new actuator, DILI can achieve the functions of motion and connection with only one system inside. Finally, a distributed algorithm is proposed in order to build a smart conveyor, and a simulator is designed that permits one to perform distributed simulations, test and validate distributed algorithms
Majed, Aliah. "Sensing-based self-reconfigurable strategies for autonomous modular robotic systems." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0013.
Full textModular robotic systems (MRSs) have become a highly active research today. It has the ability to change the perspective of robotic systems from machines designed to do certain tasks to multipurpose tools capable of accomplishing almost any task. They are used in a wide range of applications, including reconnaissance, rescue missions, space exploration, military task, etc. Constantly, MRS is built of “modules” from a few to several hundreds or even thousands. Each module involves actuators, sensors, computational, and communicational capabilities. Usually, these systems are homogeneous where all the modules are identical; however, there could be heterogeneous systems that contain different modules to maximize versatility. One of the advantages of these systems is their ability to operate in harsh environments in which contemporary human-in-the-loop working schemes are risky, inefficient and sometimes infeasible. In this thesis, we are interested in self-reconfigurable modular robotics. In such systems, it uses a set of detectors in order to continuously sense its surroundings, locate its own position, and then transform to a specific shape to perform the required tasks. Consequently, MRS faces three major challenges. First, it offers a great amount of collected data that overloads the memory storage of the robot. Second it generates redundant data which complicates the decision making about the next morphology in the controller. Third, the self reconfiguration process necessitates massive communication between the modules to reach the target morphology and takes a significant processing time to self-reconfigure the robotic. Therefore, researchers’ strategies are often targeted to minimize the amount of data collected by the modules without considerable loss in fidelity. The goal of this reduction is first to save the storage space in the MRS, and then to facilitate analyzing data and making decision about what morphology to use next in order to adapt to new circumstances and perform new tasks. In this thesis, we propose an efficient mechanism for data processing and self-reconfigurable decision-making dedicated to modular robotic systems. More specifically, we focus on data storage reduction, self-reconfiguration decision-making, and efficient communication management between modules in MRSs with the main goal of ensuring fast self-reconfiguration process
Brener, Nicolas. "Analyse et conception de systèmes robotiques modulaires et réticulaires." Paris 6, 2009. http://www.theses.fr/2009PA066370.
Full textBuessler, Jean-Luc. "Architectures neuro-mimétiques modulaires : application à l'asservissement visuel de systèmes robotiques." Mulhouse, 1999. http://www.theses.fr/1999MULH0587.
Full textThalamy, Pierre. "Distributed algorithms and advanced modeling approaches for fast and efficient object construction using a modular self-reconfigurable robotic system." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD027.
Full textHumans have always been on a quest to master their environment. But with the arrival of our digital age, an emerging technology now stands as the ultimate tool for that purpose: Programmable Matter. While any form of matter that can be programmed to autonomously react to a stimulus would fit that label, its most promising substrate resides in modular robotic systems. Such robotic systems are composed of interconnected, autonomous, and computationally simple modules that must coordinate through their motions and communications to achieve a complex common goal.Such programmable matter technology could be used to realize tangible and interactive 3D display systems that could revolutionize the ways in which we interact with the virtual world. Large-scale modular robotic systems with up to hundreds of thousands of modules can be used to form tangible shapes that can be rearranged at will. From an algorithmic point of view, however, this self-reconfiguration process is a formidable challenge due to the kinematic, communication, control, and time constraints imposed on the modules during this process.We argue in this thesis that there exist ways to accelerate the self-reconfiguration of programmable matter systems, and that a new class of reconfiguration methods with increased speed and specifically tailored to tangible display systems must emerge. We contend that such methods can be achieved by proposing a novel way of representing programmable matter objects, and by using a dedicated reconfiguration platform supporting self-reconfiguration.Therefore, we propose a framework to apply this novel approach on quasi-spherical modules arranged in a face-centered cubic lattice, and present algorithms to implement self-reconfiguration in this context. We analyze these algorithms and evaluate them on classes of shapes with increasing complexity, to show that our method enables previously unattainable reconfiguration times
HAJHOUJ, MOUAMD. "Programmation hors ligne : emulation des composants d'une cellule robotisee." Paris, ENSAM, 1988. http://www.theses.fr/1988ENAM0005.
Full textChebab, Zine Elabidine. "Conception et commande collaborative de manipulateurs mobiles modulaires (C3M3)." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC070/document.
Full textIn recent years, the concept of Industry 4.0 has led to new possibilities of use for mobile manipulators (MMs) that are generally made of a manipulator arm mounted on a mobile base. The current Ph.D. is focused on the synthesis and control of new cooperative MMs by defining three challenges. The first challenge concerns the widening of the fields of application of robots. Therefore, we define a modular robotic system based on the use of multiple MMs (mono robots or m-bots) that can be used as a global system (poly-robot or p-bot) for collaborative tasks. The second challenge concerns the definition of the kinematic structure of the MMs. We propose a new generic method of structural synthesis that allows to obtain multiple kinematic architectures for m-bots that respect the constraints imposed by the task and the workspace. This method is based on structural analysis of MMs by the evaluation of the structural parameters (connectivity, mobility, redundancy and overconstraint). The last challenge concerns the modelling and control of the new architectures for the new fields of application. Two control laws (PID control and hybrid force-position control) are proposed in order to realise the considered task. Their validation is done with advanced simulations
O'Grady, Rehan. "Morphologically responsive self-assembling robots." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210061.
Full textto different environmental contingencies. Self-assembly is the mechanism through which
agents in a multi-robot system autonomously form connections with one another to create
larger composite robotic entities. Initially, we consider a simple response mechanism
that uses stochastic self-assembly without any explicit control over the resulting morphology
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished