Academic literature on the topic 'Système polynomiaux invariants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Système polynomiaux invariants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Système polynomiaux invariants"
Zakharov, Victor G. "Reproducing solutions to PDEs by scaling functions." International Journal of Wavelets, Multiresolution and Information Processing 18, no. 03 (February 7, 2020): 2050017. http://dx.doi.org/10.1142/s0219691320500174.
Full textWang, Maw-Ling, Shwu-Yien Yang, and Rong-Yeu Chang. "Application of Generalized Orthogonal Polynomials to Parameter Estimation of Time-Invariant and Bilinear Systems." Journal of Dynamic Systems, Measurement, and Control 109, no. 1 (March 1, 1987): 7–13. http://dx.doi.org/10.1115/1.3143824.
Full textKiritsis, Konstadinos H. "Pole Assignment by Proportional-plus-derivative State Feedback for Multivariable Linear Time-invariant Systems." WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL 17 (June 16, 2022): 262–68. http://dx.doi.org/10.37394/23203.2022.17.30.
Full textVajda, S. "Deterministic identifiability and algebraic invariants for polynomial systems." IEEE Transactions on Automatic Control 32, no. 2 (February 1987): 182–84. http://dx.doi.org/10.1109/tac.1987.1104546.
Full textTAN, SHAOHUA, and JOOS VANDEWALLE. "Generalized invariant polynomials and the generalized companion form." International Journal of Control 45, no. 3 (March 1987): 811–16. http://dx.doi.org/10.1080/00207178708933771.
Full textKiritsis, Konstadinos H. "Stabilization of Linear Time-Invariant Systems by State-Derivative Feedback." WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL 18 (March 24, 2023): 65–72. http://dx.doi.org/10.37394/23203.2023.18.7.
Full textWEI, KEHUl, and B. ROSS BARMLSH. "Making a polynomial Hurwitz-invariant by choice of feedback gains†." International Journal of Control 50, no. 4 (October 1989): 1025–38. http://dx.doi.org/10.1080/00207178908953414.
Full textMohan, B. M., and K. B. Datta. "Lumped and Distributed Parameter System Identification Via Shifted Legendre Polynomials." Journal of Dynamic Systems, Measurement, and Control 110, no. 4 (December 1, 1988): 436–40. http://dx.doi.org/10.1115/1.3152709.
Full textAugusta, Petr, and Zdeněk Hurák. "Distributed stabilisation of spatially invariant systems: positive polynomial approach." Multidimensional Systems and Signal Processing 24, no. 1 (April 21, 2011): 3–21. http://dx.doi.org/10.1007/s11045-011-0152-5.
Full textBarabanov, A. E. "Invariance and polynomial design of strategies in the linear-quadratic game." Automation and Remote Control 67, no. 10 (October 2006): 1547–72. http://dx.doi.org/10.1134/s000511790610002x.
Full textDissertations / Theses on the topic "Système polynomiaux invariants"
Vu, Thi Xuan. "Homotopy algorithms for solving structured determinantal systems." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS478.
Full textMultivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method
Fernandes, Wilker Thiago Resende. "Centers and isochronicity of some polynomial differential systems." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-080613/.
Full textOs problemas do foco-centro e da isocronicidade são dois problemas clássicos da teoria qualitativa das equações diferenciais ordinárias (EDOs). Apesar de tais problemas serem investigados a mais de cem anos ainda pouco se sabe sobre eles. Recentemente o uso e desenvolvimento de ferramentas algebro-computacionais tem contribuído significativamente em seu avanço. O objetivo desta tese é colaborar com o estudo do problema do foco-centro e da isocronicidade. Utilizando ferramentas algebro-computacionais encontramos condições para a existência simultânea de dois centros em famílias de sistemas diferenciais quínticos com simetria. O estudo sobre a existência simultânea de dois centros é também conhecido como problema do bi-centro. Investigamos condições para a isocronicidade de centros para famílias de sistemas cubicos e quínticos e estudamos o comportamento global de suas órbitas no disco de Poincaré. Finalmente, tratamos da existência de superfícies invariantes e integrais primeiras para uma familia de sistemas 3-dimensionais encontrado entre outras situações na modelagem da competição entre três espécies e conhecido como sistema de May-Leonard.
Reinol, Alisson de Carvalho [UNESP]. "Integrabilidade e dinâmica global de sistema diferenciais polinomiais definidos em R³ com superfícies algébricas invariantes de graus 1 e 2." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151140.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-07-19T14:22:46Z (GMT) No. of bitstreams: 1 reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5)
Made available in DSpace on 2017-07-19T14:22:46Z (GMT). No. of bitstreams: 1 reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5) Previous issue date: 2017-07-05
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Neste trabalho, consideramos aspectos algébricos e dinâmicos de alguns problemas envolvendo superfícies algébricas invariantes em sistemas diferenciais polinomiais definidos em R³. Determinamos o número máximo de planos invariantes que um sistema diferencial quadrático pode ter e estudamos a realização e integrabilidade de tais sistemas. Fornecemos a forma normal para sistemas diferenciais com quádricas invariantes e estudamos de forma mais detalhada a dinâmica e integrabilidade de sistemas diferenciais quadráticos com um paraboloide elíptico como superfície algébrica invariante. Por fim, estudamos as consequências dinâmicas ao se perturbar um sistema diferencial, cujo espaço de fase é folheado por superfícies algébricas invariantes. Para tal, consideramos o sistema diferencial quadrático conhecido como sistema Sprott A, que depende de um parâmetro real a e apresenta comportamento caótico mesmo sem ter pontos de equilíbrio, tendo, assim, um hidden attractor para valores adequados do parâmetro a. Provamos que, para a=0, o espaço de fase desse sistema é folheado por esferas concêntricas invariantes. Utilizando a Teoria do Averaging e o Teorema KAM (Kolmogorov-Arnold-Moser), provamos que, para a>0 suficientemente pequeno, uma órbita periódica orbitalmente estável emerge de um equilíbrio do tipo zero-Hopf não isolado localizado na origem e que formam-se toros invariantes em torno desta órbita periódica. Concluímos que a ocorrência de tais fatos tem um papel importante na formação do hidden attractor.
In this work, we consider algebraic and dynamical aspects of some problems involving invariant algebraic surfaces in polynomial differential systems defined in R³. We determine the maximum number of invariant planes that a quadratic differential system can have and we study the realization and integrability of such systems. We provide the normal form for differential systems having an invariant quadric and we study in more detail the dynamics and integrability of quadratic differential systems having an elliptic paraboloid as invariant algebraic surface. Finally, we study the dynamic consequences of perturbing differential system whose phase space is foliated by invariant algebraic surfaces. For this we consider the quadratic differential system known as Sprott A system, which depends on one real parameter a and presents chaotic behavior even without having any equilibrium point, thus having a hidden attractor for suitable values of parameter a. We prove that, for a=0, the phase space of this system is foliated by invariant concentric spheres. By using the Averaging Theory and the KAM (Kolmogorov-Arnold-Moser) Theorem, we prove that, for a>0 sufficiently small, an orbitally stable periodic orbit emerges from a zero-Hopf nonisolated equilibrium point located at the origin and that invariant tori are formed around this periodic orbit. We conclude that the occurrence of these facts has an important role in the formation of the hidden attractor.
FAPESP: 2013/26602-7
Pantazi, Chara. "Inverse problems of the Darboux theory of integrability for planar polynomial differential systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/3083.
Full textDehornoy, Pierre. "Invariants topologiques des orbites périodiques d'un champ de vecteurs." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00656900.
Full textSchilli, Christian [Verfasser], Eva Barbara [Akademischer Betreuer] Zerz, and Sebastian [Akademischer Betreuer] Walcher. "Controlled and conditioned invariant varieties for polynomial control systems / Christian Schilli ; Eva Barbara Zerz, Sebastian Walcher." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1130403009/34.
Full textRezende, Alex Carlucci. "A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25112014-142038/.
Full textPlanar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
Corvez, Solen. "Etude de systèmes polynomiaux : contributions à la classification d'une famille de manipulateurs et au calcul des intersections de courbes A - splines : par Solen Corvez." Rennes 1, 2005. http://www.theses.fr/2005REN10020.
Full textLindert, Sven-Olaf. "Beiträge zur Steuerung und Regelung von mehrvariablen linearen zeitinvarianten Systemen in polynomialer Darstellung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24944.
Full textIn this thesis linear time invariant lumped systems (LTI-systems) with m>1 inputs and p > 1 outputs (MIMO-systems) are investigated. These systems can be represented by linear equations with matrices, whose entries are polynomials in the differential operator d/dt. If Laplace-transform is employed, the polynomials are in s. Algebraically polynomials form a Euclidean ring. The conversion of the matrices to the Hermite form leads to defining m basic variables. The trajectories of the basis variables may be chosen arbitrarily. With that choice the trajectories of all remaining variables and especially the input variables are determined and can be calculated without integration. A left coprime (also called controllable) model is not required. Hence basis variables are particularly useful for planning trajectories. Special attention is paid to planning trajectories with polynomials in time as basic functions and planning trajectories which minimise a quadratic functional of costs. In engineering practice the systems will always differ from the planed trajectories. Especially with unstable plants a stabilising tracking controller is compulsory. The structure of the tracking control is introduced. It becomes apparent that every linear theory for the design of closed loop controllers is suitable. Pole assignment by dynamic output feedback with low order controllers of a fixed structure is looked at in more detail. A new approach to this problem is presented. Using the modified z-transform the theory is extended to hybrid systems consisting of a digital or discrete time controller and a plant in continuous time. Thereby the course of the signals between the sampling moments is taken into account. Finally linear observers are reinvestigated using the polynomial matrix representation. It is shown that the polynomial matrix representation provides a theoretical framework in which all linear observers can be designed
Prado, Marcia Lissandra Machado. "Controle robusto por alocação de polos via analise intervalar modal." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260560.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-06T08:04:01Z (GMT). No. of bitstreams: 1 Prado_MarciaLissandraMachado_D.pdf: 1397184 bytes, checksum: 5c23769b43bb76b58c39a5fb95adaaee (MD5) Previous issue date: 2006
Resumo: Uma abordagem baseada em análise intervalar para o projeto de controladores por realimentação de estados robusta é proposta. Demonstra-se que quando especificações para alocação de pólos são representadas por conjuntos espectrais de polinômios intervalares, o problema do projeto por realimentação de estados robusta pode ser completamente formulado e resolvido no contexto de conceitos e métodos de análise intervalar. Representações poliédricas convexas de uma classe de controladores por realimentação de estados robusta satisfazendo a uma equação de Ackerman intervalar são derivadas. Um procedimento de projeto baseado em programação não-linear que objetiva a maximização da não-fragilidade do controlador robusto resultante é introduzido. Para sistemas multivariáveis é proposta uma abordagem por alocação de pólos utilizando a equação de Sylvester intervalar e técnicas de resolução baseadas em intervalos modais. Exemplos numéricos ilustram o projeto de controladores por realimentação de estados obtidos a partir da abordagem por análise intervalar proposta
Abstract: An interval analysis approach for the design of robust state feedback controllers is proposed. It is shown that when regional pole placement specifications are represented as spectral sets of interval polynomials, the robust state feedback design problem can be entirely formulated and solved in the context of the concepts and methods of interval analysis. Explicit convex polyhedral representations of a class of robust state feedback controllers satisfying an interval Ackerman¿s equation are derived. A design procedure based on nonlinear programming which aims at maximizing the non-fragility of the resulting robust controller is introduced. In the case multivariable systems is proposed an approach based on pole placement which employs an interval Sylvester equation and modal intervals techniques. Numerical examples illustrate the design of robust state feedback controllers through the interval analysis approaches proposed.
Doutorado
Automação
Doutor em Engenharia Elétrica
Books on the topic "Système polynomiaux invariants"
Zabrodin, Anton. Quantum spin chains and classical integrable systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0013.
Full textInvitation to Nonlinear Algebra. American Mathematical Society, 2021.
Find full textBook chapters on the topic "Système polynomiaux invariants"
Mover, Sergio, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, and Stefano Tonetta. "Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems." In Computer Aided Verification, 529–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_25.
Full textRodríguez-Carbonell, Enric, and Ashish Tiwari. "Generating Polynomial Invariants for Hybrid Systems." In Hybrid Systems: Computation and Control, 590–605. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31954-2_38.
Full textArtés, Joan C., Jaume Llibre, Dana Schlomiuk, and Nicolae Vulpe. "Invariants in mathematical classification problems." In Geometric Configurations of Singularities of Planar Polynomial Differential Systems, 91–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50570-7_4.
Full textChesi, Graziano, Andrea Garulli, Alberto Tesi, and Antonio Vicino. "Robustness with Time-invariant Uncertainty." In Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems, 99–132. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-781-3_4.
Full textArtés, Joan C., Jaume Llibre, Dana Schlomiuk, and Nicolae Vulpe. "Invariant theory of planar polynomial vector fields." In Geometric Configurations of Singularities of Planar Polynomial Differential Systems, 99–132. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50570-7_5.
Full textKofnov, Andrey, Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Efstathia Bura. "Moment-Based Invariants for Probabilistic Loops with Non-polynomial Assignments." In Quantitative Evaluation of Systems, 3–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16336-4_1.
Full textSogokon, Andrew, Khalil Ghorbal, Paul B. Jackson, and André Platzer. "A Method for Invariant Generation for Polynomial Continuous Systems." In Lecture Notes in Computer Science, 268–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-49122-5_13.
Full textHacinliyan, Avadis Simon, Orhan Ozgur Aybar, and Ilknur Kusbeyzi Aybar. "Invariants, Attractors and Bifurcation in Two Dimensional Maps with Polynomial Interaction." In Chaos and Complex Systems, 349–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33914-1_47.
Full textCaminata, Alessio, and Elisa Gorla. "Solving Multivariate Polynomial Systems and an Invariant from Commutative Algebra." In Arithmetic of Finite Fields, 3–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68869-1_1.
Full textSchilli, Christian, Eva Zerz, and Viktor Levandovskyy. "Controlled and Conditioned Invariance for Polynomial and Rational Feedback Systems." In Algebraic and Symbolic Computation Methods in Dynamical Systems, 259–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38356-5_10.
Full textConference papers on the topic "Système polynomiaux invariants"
Goubault, Eric, Jacques-Henri Jourdan, Sylvie Putot, and Sriram Sankaranarayanan. "Finding non-polynomial positive invariants and lyapunov functions for polynomial systems through Darboux polynomials." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6859330.
Full textMohsenizadeh, Navid, Swaroop Darbha, and Shankar P. Bhattacharyya. "Synthesis of Digital PID Controllers for Discrete-Time Systems With Guaranteed Non-Overshooting Transient Response." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6196.
Full textEmami, Tooran, and John M. Watkins. "Complementary Sensitivity Design of PID Controllers for Arbitrary-Order Transfer Functions With Time Delay." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2205.
Full textSpires, J. M., and S. C. Sinha. "Response of Linear Time-Periodic Systems Subjected to Stochastic Excitations: A Chebyshev Polynomial Approach." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0336.
Full textLiu, Jiang, Naijun Zhan, and Hengjun Zhao. "Computing semi-algebraic invariants for polynomial dynamical systems." In the ninth ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2038642.2038659.
Full textBen Sassi, Mohamed Amin, Antoine Girard, and Sriram Sankaranarayanan. "Iterative computation of polyhedral invariants sets for polynomial dynamical systems." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7040384.
Full textO’Connor, Sam, Mark Plecnik, Aravind Baskar, and James Joo. "Complete Solutions for the Approximate Synthesis of Spherical Four-Bar Function Generators." In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-116895.
Full textXue, Bai, Qiuye Wang, Naijun Zhan, and Martin Fränzle. "Robust invariant sets generation for state-constrained perturbed polynomial systems." In HSCC '19: 22nd ACM International Conference on Hybrid Systems: Computation and Control. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3302504.3311810.
Full textSharma, Ashu, and Subhash C. Sinha. "On Computation of Approximate Lyapunov-Perron Transformations." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97702.
Full textVu, Thi Xuan. "Computing Critical Points for Algebraic Systems Defined by Hyperoctahedral Invariant Polynomials." In ISSAC '22: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3476446.3536181.
Full text