Contents
Academic literature on the topic 'Système photoamorceur'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Système photoamorceur.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Système photoamorceur"
Bayou, Samir, Mohamed Mouzali, and Marc J. M. Abadie. "Étude de la photoréticulation par DPC de deux systèmes TEGAA/photoamorceur et Bis-GAA/photoamorceur." Comptes Rendus Chimie 8, no. 5 (May 2005): 903–10. http://dx.doi.org/10.1016/j.crci.2004.10.023.
Full textDissertations / Theses on the topic "Système photoamorceur"
Metral, Boris. "Systèmes photoamorceurs et modèle pour la fabrication additive par photopolymérisation." Thesis, Mulhouse, 2020. https://www.learning-center.uha.fr/.
Full textVat photopolymerization technologies are emerging quickly in the field of additive manufacturing. To follow this fast expansion of the market, highly efficient and affordable photosensitive resins are necessary. In this work, we introduce a new three-component phototiniating system (3K PIS) based on the Safranine O (SFH+) dye which has been identified as a very efficient initiator in several 3K PIS for photopolymerization processes.The dye is combined with a Tetraphenylborate salt (TPB) as electron donor and a Triazine derivative (TA) as electron acceptor to form a photochemical regenerating cycle. The photocycling mechanism is explored via laser flash photolysis (LFP) and the photopolymerization is investigated through Real-Time-Fourier Transform Infrared spectroscopy (RT-FTIR). Infrared experiments with several irradiances allow disclosure of an empirical model predicting conversion as a function of time and light intensity.Following this, cure depth experiments are conducted in agreement with Jacobs’ equation and the resin 3D printing parameters, i.e. critical energy (Ec) and penetration depth (Dp), are established. These parameters are linked to RT-FTIR data, resulting in the determination of the critical time (tc) and the conversion at gel point.Finally, high resolution complex pieces are printed with the resin which composition was tailored in accordance with our studies, demonstrating the viability of this formulation in DLP 3D printing
Irmouli, Youcef. "Etude de systèmes de finitions pour bois : application de nouvelles formulations, vieillissement et amélioration des performances." Thesis, Nancy 1, 2007. http://www.theses.fr/2007NAN10128/document.
Full textThe durability of a finish applied onto wood is generally affected by the natural origin of the material and merely by its anatomy and the presence of extractives. In the first part of this work, the photocurable finishes used in industrial joinery were studied because of their advantages and especially the reduction of Volatile Organic Compounds (VOC). The reaction of polymerization of acrylic resins was investigated using photocalorimetry under monochromatic radiation at 366, 420, 440 and 450 nm, with a filter at 450 nm and with the overall light spectrum. The results obtained show that solar light allows the curing reaction if some improved photoinitiators are used (2nd generation photoinitiators). The influence of UV absorbers -on the polymerization initiated by these products- was also studied. The performances of complete finishing systems were evaluated in an accelerated weathering test in QUV. The second part of the work is an exploratory study aiming to develop nanodisperse inorganic UV absorbers with optimized composition and morphology. Three compounds were thus tested namely CUB, HTB and RNE. Nevertheless their performances appeared quite insufficient during an accelerated weathering test simulating outside conditions
Erddalane, Abdelâli. "Réactivité des états excités de systèmes photoamorceurs à trois composants." Mulhouse, 1994. http://www.theses.fr/1994MULH0327.
Full textObeid, Houssam. "Intérêt des systèmes photoamorceurs multicomposants dans les réactions de photopolymérisation radicalaire." Mulhouse, 2006. http://www.theses.fr/2006MULH0833.
Full textOur work was centered on the study of multi-component photoinitiating systems which led to a noticeable speed of polymerization. The application of these systems in two completely different fields was developed. The first field is very traditional since it relates to the formation of protective coatings for wood. The second field is much more "high technology"; it corresponds to the formation of images under laser beam. In the first field, some inhibition and retardation effects were observed and were attributed to the release of phenolic derivatives present at the wood interface. The influence of the phenolic derivatives of wood on the kinetics of polymerization in the presence of various photoinitiating systems was studied and the most inhibiting phenols for the polymerization were identified. Then, the efficiency of a traditional photoinitiating system with multi-component photoinitiating systems in the presence of phenols was compared. In the second field: a study was devoted around new multi-component photoinitiating systems based on bis-imidazole derivatives used in Laser Direct Imaging. The performance of various multi-component photoinitiating systems obtained by RT-FTIR in order to understand the mechanisms occuring in the photopolymerization reaction was compared. The results of the polymerization kinetics and complementary data obtained allowed the elaboration of a general picture for the mechanisms encountered in different multi-component photoinitiating systems
Grotzinger, Caroline. "Réactivité de systèmes photoamorceurs radicalaires multicomposants sensibles dans le visible : mécanismes d'interactions et optimisation." Mulhouse, 2000. http://www.theses.fr/2000MULH0620.
Full textDi, Stefano Luciano Héctor. "Development of New Photoiniator Systems for Polymerization with Visible Light." Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH9439.
Full textPhotopolymerization is a technology that is gaining more and more importance due to its numerous applications and its advantages compared to thermic polymerization. This chemical process requires compounds called photoinitiators, which absorb light and produce the initiation of the radical polymerization. The development of photoinitiating systems (PIS) which are able to absorb visible light have an increasing interest due to its industrial applications, such as holographic recording. During this thesis, many PIS were studied, from its photophysical properties to its application in acrylate polymerization. There are many different types of photoinitiators. The most classical ones are Type I PI, which are molecules that overcome homolytic cleavage from their excited state, generating initiating radicals immediately after photon absorption. Type II PI, in contrast, are composed by two molecules: one that absorbs the photon, and other that will react with the excited state of the first via electron transfer or hydrogen transfer, generating radicals that will be able to initiate polymerization. In last place, there are the most efficient Photocyclic Initiating Systems (PCIS) whose mechanism is more complicated and will be widely discussed within these pages. A state of the art of the PIS available up to date is made in the first chapter. Given the importance of the properties of the molecules involved in the photoinitiating process, the studies of the photophysical properties of a Photoinitiator, the Astrazone Orange (AO), are shown. It was found that this molecule suffers an isomerization process from its excited state, which then comes slowly back to the more stable conformer. This process being viscosity-dependent makes AO a suitable photoinitiator for polymerization with visible light in highly viscous media. The last three chapters of this thesis are devoted to the study of a novel technique called Pulsed Laser Polymerization (PLP). This technique consists in the irradiation of the samples with a short duration pulsed laser, which allows the separation of the initiation steps of the polymerization reaction from the steps of propagation and termination. A simple Type I PI was used as a model to study the properties of this technique of polymerization. The monomer conversion was registered by RT-FTIR and analyzed. To a better understanding of these results, a mathematical model was developed. Thanks to it, it was possible to collect valuable information about propagation and termination rate constants (kp and kt, respectively), the variation of viscosity with conversion and other aspects relatives to PLP mechanism. Furthermore, the efficiency of many visible light PIS was studied by PLP. Their performance was compared and studied and contrasted with the classical continuous irradiation mode (CW). The characteristics that a PIS must have in order to show efficient polymerization in PLP mode were found and discussed. Finally, the effect of formulation viscosity in PLP and CW was analyzed by diluting the sample with different amounts of DMSO. In PLP, it was seen that the highest conversion is found for the most concentrated samples, while the opposite effect is noticed in CW. This result is attributed to the different conditions given by the difference in irradiation methods
Zerelli, Mariem. "Vers une chimie plus douce : de nouveaux systèmes photoamorceurs hautes performances pour la polymérisation radicalaire, cationique et anionique dans les conditions plus respectueuses de l'environnement." Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH0778/document.
Full textNowadays, the photopolymerization processes are omnipresent in various academic and industrial fields such as the dental domain, surgical implants, 3D printing … However, the advances realized for this new way of polymer synthesis remain limited and require more developments.The polymers synthesized by photochemical process have the advantage of being more ecological than the thermal equivalents. Indeed, their preparation involves less energy than the other techniques of polymer synthesis. The elaboration of polymers by photochemical way is also more advantageous in terms of time required for the polymerization and fewer volatile organic compounds are emitted in the atmosphere. Moreover, only the irradiated zones are polymerized which allows a better spatial control of the polymerization. Several searches were already led in this domain by using mainly ultraviolet rays. However, this range of wavelengths could be harmful for the health. Besides, the UV sources are energy consuming. Consequently, this technique is no longer in agreement with the current environmental requirements. In parallel, few photoinitiating systems showed good efficiency in the visible wavelength range.In this context, we have been interested in the development of new photoinitiating systems more environment-friendly and more efficient to initiate radical, cationic and anionic polymerization under visible light irradiation.The visible light presents several advantages compared to the ultraviolet light. Indeed, it is less harmful and lower energy consuming. Particularly, light emitting diodes (LED) are interesting because they are compact and therefore easy to use, long lasting, no mercury is involved for the manufacturing … Thus, the performances improvement of the photoinitiating systems efficient upon visible LED irradiation is clearly required In this regard, the study of new high performances photoinitiating systems for radical, cationic and anionic polymerization under visible LED irradiation is at the core of the current PhD project.Our development project was based essentially on the following approaches: • Good absorption properties of the developed photoinitiators • The best matching between the absorption spectrum of the photoinitiator and the emission spectrum of the irradiation device• Use of LEDs • Development of water soluble photoinitiators for photopolymerization processes in aqueous medium.We were interested in various chromophore families in order to establish the relationship between the structure, the reactivity and the efficiency of the developed photoinitiating systems.The results obtained could be divided into two big parts: the first one has an academic character whereas the second part concerns an applied study in the dental domain.For the first part, various families of visible chromophores were introduced as high performances photoinitiators for radical photopolymerization in the visible range: i) camphorquinone derivatives ii) acylsilanes iii) naphthalimides iv) diketopyrrolopyrroles. Cationic photopolymerization has been studied also through the development of a new iodonium salt and across the use of new photoredox catalysts upon visible LED irradiation. And finally, new photobase generators have been developed for anionic polymerization upon near UV and visible LED irradiation.In the second part, a new class of photoinitiators based on silylglyoxylate structure have been introduce as efficient systems for the radical photopolymerization initiation process upon blue light and applied for the dental field. [...]
Tehfe, Mohamad Ali. "Etude de nouveaux systèmes amorceurs pour des polymérisations radicalaires ou cationiques." Phd thesis, Université de Haute Alsace - Mulhouse, 2011. http://tel.archives-ouvertes.fr/tel-00694133.
Full textChristmann, Julien. "Photochimie moléculaire des processus de photopolymérisation : de l'étude mécanistique à la modélisation cinétique." Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH0698.
Full textThis thesis deals with the mechanistic study of complex photoinitiating systems and the kinetic modeling of the photopolymerization process. In a first time, the photochemical mechanism of a system combining [Ru(bpy)3]2+ and RAFT agents for the initiation and control of a radical process has been studied. An energy transfer has been clearly demonstrated, contradicting the electron transfer mechanism generally proposed. A dual bicyclic three-component photoinitiating system ITX/IOD+/RSH has been considered for the synthesis of organic-inorganic hybrid materials. Under light exposure, this system produces simultaneously radicals and protons, enabling the initiation of a radical polymerization and a sol-gel process, respectively. In a second time, interdependence between photopolymerization kinetics and evolution of the medium’s properties has been studied, through developing a kinetic model for the simulation of the whole photopolymerization process. Photoinitiating systems of growing complexity have been included in order to study specificities of their kinetics. A type-I system has shown major termination modes and their evolution during the polymer synthesis, while the non-negligible role of back electron transfer has been highlighted for type-II photoinitiating systems. Role of terminating agent of a photoproduct based on a cationic dye, as well as some specificities of photocyclic three-component systems, have been finally studied with the model