Academic literature on the topic 'Systeme holonome'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Systeme holonome.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Systeme holonome"
LEVI, MARK. "GEOMETRY OF VIBRATIONAL STABILIZATION AND SOME APPLICATIONS." International Journal of Bifurcation and Chaos 15, no. 09 (September 2005): 2747–56. http://dx.doi.org/10.1142/s0218127405013745.
Full textIto, Masahide. "Motion Planning of a Second-Order Nonholonomic Chained Form System Based on Holonomy Extraction." Electronics 8, no. 11 (November 12, 2019): 1337. http://dx.doi.org/10.3390/electronics8111337.
Full textCheon, Taksu, Atushi Tanaka, and Sang Wook Kim. "Exotic quantum holonomy in Hamiltonian systems." Physics Letters A 374, no. 2 (December 2009): 144–49. http://dx.doi.org/10.1016/j.physleta.2009.10.064.
Full textStanchenko, S. V. "Non-holonomic Chaplygin systems." Journal of Applied Mathematics and Mechanics 53, no. 1 (January 1989): 11–17. http://dx.doi.org/10.1016/0021-8928(89)90126-3.
Full textAgrawal, S. K. "Multibody Dynamics: A Formulation Using Kane’s Method and Dual Vectors." Journal of Mechanical Design 115, no. 4 (December 1, 1993): 833–38. http://dx.doi.org/10.1115/1.2919276.
Full textWU, SIYE. "GEOMETRIC PHASES IN THE QUANTISATION OF BOSONS AND FERMIONS." Journal of the Australian Mathematical Society 90, no. 2 (April 2011): 221–35. http://dx.doi.org/10.1017/s1446788711001236.
Full textAsadov, Hikmat, Sevindj Abdullayeva, and Ulviya Tarverdiyeva. "Questions on Optimization of Izomorphic-Holonomic Information-Measuring Systems." Известия высших учебных заведений. Электромеханика 63, no. 6 (2020): 51–56. http://dx.doi.org/10.17213/0136-3360-2020-6-51-56.
Full textNiu, Xiaoji, You Li, Quan Zhang, Yahao Cheng, and Chuang Shi. "Observability Analysis of Non-Holonomic Constraints for Land-Vehicle Navigation Systems." Journal of Global Positioning Systems 11, no. 1 (June 30, 2012): 80–88. http://dx.doi.org/10.5081/jgps.11.1.80.
Full textOrtiz-Bobadilla, L., E. Rosales-González, and S. M. Voronin. "Extended Holonomy and Topological Invariance of Vanishing Holonomy Group." Journal of Dynamical and Control Systems 14, no. 3 (July 2008): 299–358. http://dx.doi.org/10.1007/s10883-008-9041-0.
Full textCai, J. L., and F. X. Mei. "Conformal Invariance and Conserved Quantity of the Higher-Order Holonomic Systems by Lie Point Transformation." Journal of Mechanics 28, no. 3 (August 9, 2012): 589–96. http://dx.doi.org/10.1017/jmech.2012.67.
Full textDissertations / Theses on the topic "Systeme holonome"
Rebahi, Yacine. "Irrégularité des D-modules algébriques holonomes." Université Joseph Fourier (Grenoble ; 1971-2015), 1996. http://www.theses.fr/1996GRE10205.
Full textAbdel, Gadir Basil. "Analyse microlocale des systèmes différentiels holonomes." Grenoble 1, 1992. http://www.theses.fr/1992GRE10071.
Full textGloukhikh, Ioulia. "Systèmes mécaniques réversibles en dynamique holonome et non-holonome des corps solides rigides." Phd thesis, Ecole des Ponts ParisTech, 2003. http://tel.archives-ouvertes.fr/tel-00005724.
Full textLes recherches présentées dans cette thèse démontrent lefficacité des méthodes fondées sur les propriétés de réversibilité des systèmes mécaniques, propriété dont lusage est essentiel dans tous les résultats obtenus :
Létude de la stabilité des rotations autour de laxe vertical de lellipsoïde pesant homogène sur le plan horizontal.
Létude de la stabilité des mouvements de roulement sans glissement dun ellipsoïde creux pesant le long de la ligne droite sur le plan horizontal : conclusion sur linstabilité causée par la résonance paramétrique et conditions nécessaires de stabilité, obtenues par calcul numérique.
Lexpression détaillée du coefficient de résonance en cas de résonance paramétrique pour les systèmes réversibles du troisième ordre (et la réalisation du code de calcul correspondant).
La conservation des oscillations 2pik périodiques du satellite sur lorbite circulaire sous leffet des moments gravitationnel et aérodynamique dans le cas de lorbite faiblement elliptique.
Lexistence des rotations 2pi périodiques du satellite sur lorbite elliptique arbitraire sous leffet des moments gravitationnel et aérodynamique (détermination des vitesses initiales pour les rotations, étude de leur stabilité).
La détermination des rotations rapides dans le problème de V.V. Beletsky (le satellite étant soumis aux seules forces gravitationnelles sans prendre en considération la résistance de latmosphère) et létude de leur stabilité.
Li, Shunjie. "Géométrie et classification des systèmes de contact : applications du contrôle des systèmes mécaniques non holonomes." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00665223.
Full textJEAN, FREDERIC. "Complexites pour les systemes non-holonomes." Paris 6, 1998. http://www.theses.fr/1998PA066170.
Full textYuan, Hongliang. "Control of NonH=holonomic Systems." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2751.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Brevet, Guillaume. "Sur l'irrégularité d'un système différentiel holonome le long d'une courbe plane." Angers, 1999. http://www.theses.fr/1999ANGE0025.
Full textZ. Mebkhout defined the irregularity bundle of a holonomic differential system along an analytic subspace. This object had appeared in the special case of the constitutive module of holomorphic functions on a complex analytic variety, as the obstruction to Grothendieck's comparison theorem, which ultimately translates the regularity of the structural bundle. The irregularity bundle also generalises in higher dimensions the irregularity space of B. Malgrange in the case of one variable. Irregularity bundles have the property of perversity but some perverse bundles are not the irregularity of differential systems. This raises the problem of determining the essential image of the irregularity functor. In this work we study this problem when the hypersurface is a curve embedded in a surface. First, we give a counterexample to the essential subjectivity: we consider the irregularity on the splitting surface of the origin of the plane along the total transform of a curve and we exhibit a perverse beam of direct non-perverse image. We then prove, using the desingularisation of a plane curve, that the irregularity restricted to the seed of an irreducible blunt curve provides an essentially surjective functor to local systems on the blunt curve. We also compute precisely the cohomology bundles of the irregularity of certain d-modules of the exponential type along a normal crossing. These calculations allow us to find differential systems such that the monodromy of the associated local system has as eigenvalues the roots of unity. Finally, we show the following result: the irregularity along a smooth curve seed is an essentially surjective functor with values in the seeds of monodromic perverse bundles. The proof of this theorem relies on the category equivalence between monodromic perverse bundles and a category of diagrams of finite dimensional vector spaces. In the latter category, the indecomposable objects are known. All the work consists therefore in reaching them, which is done by unscrewing arguments by exploiting the exactness of the irregularity functor
MOURA, CLAIRE. "Non-holonomie des systemes de champs de vecteurs analytiques." Toulouse 3, 1998. http://www.theses.fr/1998TOU30161.
Full textBorzone, Tommaso. "Decentralized control of multi-agent systems : a hybrid formalism." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0078/document.
Full textOver the last years, multi-agents problems have been extensively studied from the control theory community. One of the most popular multi-agents control topics is the consensus problem where a group of agents reaches an agreement over the value of a certain parameter or variable. In this work we focus our attention on the consensus problem of networks of non-linear reference tracking agents. In first place, we use sporadic interactions modeled by relative sensing to deal with the decentralized consensus of the references. The reference is therefore feeded the tracking dynamics of each agent. Differently from existent works, the stability analysis of the overall system required the usage of hybrid systems theory tools, due to dual nature of the two stages approach. The analysis is carried out considering different scenarios of network topology and interactions. For each case a stability sufficient condition in terms of the minimum allowed time between two consecutive reference updates is provided. The proposed framework is applied to the rendez-vous and formation realisation tasks for non-holonomic mobile robots, which appear among the richest research topics in recent years. The same problem is addressed in the context of a real field application, namely a fleet management system for a group of robotic vehicles deployable in an industrial environment for monitoring and data collection purpose. The development of such application was motivated by the fact that this thesis is part of the Future of Factory Lorraine (FFLOR) project, developed by the technological research department of the Commissariat à l'énergie atomique et aux énergies alternatives (CEA tech)
Fruchard, Matthieu. "Méthodologies pour la commande de manipulateurs mobiles non-holonomes." Paris, ENMP, 2005. http://www.theses.fr/2005ENMPA001.
Full textThis PhD thesis concerns the control of hybrid holonomic/ nonholonomic mobile manipulators, i. E. Robots composed of a manipulator arm mounted on a mobile platform. This work is devoted to the determination of a general framework for the feedback control of such systems. These control methodologies are based on the fact that a general strategy of motion coordination between the manipulator and the mobile platform requires to monitor the situation (position and orientation) of the platform. An original feature of the two approaches we propose is to allow a coordinated control of a priority manipulation task with a secondary locomotion task, obtained via the practical stabilization of the complete platform's situation along any reference trajectory. These two general methodologies rely on the fusion of two control tools: the task function approach, devoted to the control of manipulator arms, and the transverse functions approach, devoted to the control of nonholonomic platforms. Various application cases dealing with target tracking validate the flexibility and the polyvalence of these control approaches, through the choice of several strategies of cooperation between manipulation and locomotion subsystems
Books on the topic "Systeme holonome"
Saito, Mutsumi. Gröbner deformations of hypergeometric differential equations. Berlin: Springer, 2000.
Find full textSoltakhanov, Shervani Kh, Mikhail P. Yushkov, and Sergei A. Zegzhda. Mechanics of non-holonomic systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85847-8.
Full textConference on Geometric Control and Non-holonomic Mechanics (1996 Mexico City, Mexico). Geometric control and non-holonomic mechanics: Conference on Geometric Control and Non-holonomic Mechanics, June 19-21, 1996, Mexico City. Edited by Jurdjevic Velimir and Sharpe R. W. Providence, R.I: American Mathematical Society, 1998.
Find full textGeometric, control, and numerical aspects of nonholonomic systems. Berlin: Springer, 2002.
Find full textSaito, Mutsumi, Nobuki Takayama, and Bernd Sturmfels. Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6. Springer, 2000.
Find full textSoltakhanov, Sh Kh, Mikhail Yushkov, and S. Zegzhda. Mechanics of Non-Holonomic Systems: A New Class of Control Systems. Springer London, Limited, 2009.
Find full textSoltakhanov, Sh Kh, Mikhail Yushkov, and S. Zegzhda. Mechanics of Non-Holonomic Systems: A New Class of Control Systems. Springer Berlin / Heidelberg, 2010.
Find full textMann, Peter. Coordinates & Constraints. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0006.
Full textMann, Peter. Constrained Lagrangian Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0008.
Full textBook chapters on the topic "Systeme holonome"
Haraoka, Yoshishige. "Holonomic Systems." In Trends in Mathematics, 59–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52842-7_2.
Full textSoltakhanov, Shervani Kh, Mikhail P. Yushkov, and Sergei A. Zegzhda. "Holonomic Systems." In Foundations of Engineering Mechanics, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85847-8_1.
Full textUmerez, Jon, and Matteo Mossio. "Constraint, Holonomic." In Encyclopedia of Systems Biology, 494. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_706.
Full textSaito, Mutsumi, Bernd Sturmfels, and Nobuki Takayama. "Solving Regular Holonomic Systems." In Gröbner Deformations of Hypergeometric Differential Equations, 51–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04112-3_2.
Full textUmerez, Jon, and Matteo Mossio. "Constraint, Non-holonomic." In Encyclopedia of Systems Biology, 494. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_707.
Full textMeigniez, Gaêl. "Holonomy Groups of Solvable Lie Foliations." In Integrable Systems and Foliations, 107–46. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-4134-8_7.
Full textBjörk, Jan-Erik. "Distributions and regular holonomic systems." In Analytic D-Modules and Applications, 281–332. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-0717-6_8.
Full textIyengar, Srikanth, Graham Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag Singh, and Uli Walther. "Holonomic rank and hypergeometric systems." In Graduate Studies in Mathematics, 247–56. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/gsm/087/24.
Full textLeitner, Felipe. "A Remark On Unitary Conformal Holonomy." In Symmetries and Overdetermined Systems of Partial Differential Equations, 445–60. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73831-4_23.
Full textTeodorescu, Petre P. "Dynamics of Non-holonomic Mechanical Systems." In Mechanical Systems, Classical Models, 411–504. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2764-1_5.
Full textConference papers on the topic "Systeme holonome"
Oprea, Maria, and William Clark. "How do we walk? Using hybrid holonomy to approximate non-holonomic systems *." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9993246.
Full textTerze, Zdravko, Dubravko Matijasˇevic´, Milan Vrdoljak, and Vladimir Koroman. "Differential-Geometric Characteristics of Optimized Generalized Coordinates Partitioned Vectors for Holonomic and Non-Holonomic Multibody Systems." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86849.
Full textMüller, Andreas. "A Proposal for a Unified Concept of Kinematic Singularities for Holonomic and Non-Holonomic Mechanisms." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70649.
Full textTemizer, Selim, and Leslie Pack Kaelbling. "Holonomic planar motion from non-holonomic driving mechanisms: the front-point method." In Intelligent Systems and Advanced Manufacturing, edited by Douglas W. Gage and Howie M. Choset. SPIE, 2002. http://dx.doi.org/10.1117/12.457456.
Full textMukherjee, Rudranarayan M. "Operational Space Algorithm for Flexible Multibody Systems With Generalized Topologies." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48657.
Full textKazansky, Alexander B., and Daniel M. Dubois. "Bootstrapping of Life through Holonomy and Self-modification." In COMPUTING ANTICIPATORY SYSTEMS: CASYS ‘09: Ninth International Conference on Computing Anticipatory Systems. AIP, 2010. http://dx.doi.org/10.1063/1.3527167.
Full textTerze, Zdravko, and Joris Naudet. "Discrete Mechanical Systems: Projective Constraint Violation Stabilization Method for Numerical Forward Dynamics on Manifolds." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35466.
Full textYoshimura, Hiroaki, and Kenji Soya. "On the Geometric Stabilization for Discrete Hamiltonian Systems With Holonomic Constraints." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86354.
Full textMurakami, Hidenori, and Takeyuki Ono. "A Variational Derivation of Equations of Motion With Contact Constraints Using SE(3)." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87126.
Full textYoshimura, Hiroaki. "A Geometric Approach to Constraint Stabilization for Holonomic Lagrangian Systems." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35429.
Full text