Academic literature on the topic 'Système en apprentissage automatique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Système en apprentissage automatique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Système en apprentissage automatique"
Fontanabona, Jacky. "Mieux comprendre comment un élève donne du sens aux cartes." Cahiers de géographie du Québec 43, no. 120 (April 12, 2005): 517–38. http://dx.doi.org/10.7202/022853ar.
Full textHeddam, Salim, Abdelmalek Bermad, and Noureddine Dechemi. "Modélisation de la dose de coagulant par les systèmes à base d’inférence floue (ANFIS) application à la station de traitement des eaux de Boudouaou (Algérie)." Revue des sciences de l’eau 25, no. 1 (March 28, 2012): 1–17. http://dx.doi.org/10.7202/1008532ar.
Full textRigaud, Françoise. "Apprentissage et système éducatif." Raison présente 110, no. 1 (1994): 29–41. http://dx.doi.org/10.3406/raipr.1994.3202.
Full textBenbouzid, Bilel. "Introduction au dossier : « Équité en apprentissage automatique »." Statistique et société, no. 10 | 3 (December 1, 2022): 9–11. http://dx.doi.org/10.4000/statsoc.581.
Full textSerry, Arnaud, and Laurent Lévêque. "Le système d’identification automatique (AIS)." Netcom, no. 29-1/2 (December 14, 2015): 177–202. http://dx.doi.org/10.4000/netcom.1943.
Full textFriemel, F., P. Lerouge, F. Poirier, C. Larger, and G. Cannet. "Système automatique d'évaluation des performances anaérobies." Science & Sports 4, no. 3 (September 1989): 193–98. http://dx.doi.org/10.1016/s0765-1597(89)80055-3.
Full textBackelandt, B., F. Cocchiello, B. Schaffar, C. Lespagnol, P. Alexandre, and M. Bachmann. "Système d’inspection automatique de surface SIAS." Revue de Métallurgie 93, no. 10 (October 1996): 1265–70. http://dx.doi.org/10.1051/metal/199693101265.
Full textNault, Georges. "Vers une théorie du récit automatique." Cinémas 2, no. 1 (March 8, 2011): 137–48. http://dx.doi.org/10.7202/1001055ar.
Full textHertig, Michael. "L' enrichissement automatique de l’indexation dans le réseau Renouvaud." Informationswissenschaft: Theorie, Methode und Praxis 6, no. 1 (July 9, 2020): 298–311. http://dx.doi.org/10.18755/iw.2020.16.
Full textBuvet*, Pierre-André, and Laurent Tromeur. "Le dialogue homme-machine : un système de traduction automatique spécifique." Traduction 55, no. 1 (April 30, 2010): 58–70. http://dx.doi.org/10.7202/039602ar.
Full textDissertations / Theses on the topic "Système en apprentissage automatique"
Burg, Bernard. "Apprentissage de règles de comportement destinées au contrôle d'un système." Paris 11, 1988. http://www.theses.fr/1988PA112375.
Full textProcess control systems have to face applications which are always more ambitions and difficult to master. In some cases it is not easy to use conventional process control techniques. With the introduction of declarative methods it is possible to start in a pragmatic way and to set an implicit formulation of the problem when no explicit formulation is available. New mechanisms can be envisioned, and we conceived a rule based controller, then the difficulty remains on the design of the rule sets. To overcome this problem, we had to use jointly some learning techniques, such as data analysis to cope with noisy data and to project them into reduced space representations. Then structural techniques allow to modelise the temporal evolution of the process control and the hidden structures. Finally, artificial intelligence machine learning techniques discover the concepts and generalise the acquired knowledge. The whole technique set is supervised by artificial intelligence, it analyses the results issued from each learning step and planes the next action to perform. Three learning strategies are used: the first one starts from the data and uses inductive learning, it proves some completeness. The second one begins with a fuzzy model and acquires rules by deduction, it brings coherency via expert knowledge. Finally the behavior rules are used and refined by means of interaction with the environment. The learning program CANDIDE performed two case studies - the speed control of a DC motor the automatic driving of a car
Robineau, Pierre. "Vers un système d'apprentissage symbolique flexible et compréhensible pour une aide à la découverte de connaissances." Avignon, 1995. http://www.theses.fr/1995AVIG0111.
Full textLin, Shiuan-Sung. "Optimisation du graphe de décodage d'un système de reconnaissance vocale par apprentissage discriminant." Paris, ENST, 2007. http://www.theses.fr/2007ENST0006.
Full textThe three main knowledge sources used in the automatic speech recognition (ASR), namely the acoustic models, a dictionary and a language model, are usually designed and optimized in isolation. Our previous work proposed a methodology for jointly tuning these parameters, based on the integration of the resources as a finite-state graph, whose transition weights are trained discriminatively. In this training framework, parameter optimization is performed on a static decoding graph, whose transition weights are iteratively adjusted. We extend our previous work to a much more complex large-vocabulary task: French radio broadcast news database (ESTER). We also propose several fast decoding techniques to make the training practical. Experiments show that a reduction of 1% absolute of word error rate (WER) can be obtained, demonstrating the effectiveness of this training framework. In addition, we also investigate the strengths and shortcomings of this approach and discuss the new directions it opens
Hoet, Shirley. "Apprentissage de la communication dans un système multi-agents ouvert, asynchrone et faiblement couplé." Paris 6, 2012. http://www.theses.fr/2012PA066511.
Full textIn a Multi-Agent System (MAS) , direct communication allows agents to exchange information, delegate tasks or negotiate by sending structured messages. In current approaches, it is generally assumed that agents know the content and recipients of the messages it has to send, and the moment in time when it should send it. However, in open and loosely coupled MAS, this hypothesis is no longer valid : agents to not "know" each other and cannot determine in advance what message to send, when and to whom. The goal of this PhD thesis is to define mechanisms for agents to learn how to communicate with other agents, based on their own goals and changes perceived in the system. First, we present an exploration algorithm coupled with a multi-agent protocol that allows agents to build the content of their messages. Second, we present a reinforcement learning mechanism that allows an agent to decide when it must communicate and what message it must send. Our algorithm is based on using a memory in which the agent can store its beliefs and the communication acts it has used. The evaluation ofour learning algorithm showed problems that come from using a general-purpose memory structure. This impacts our learning mechanism by creating a too large set of states for the algorithm to workThat is why we present a new model of memory for communication learning based on storing dates and message answers. Last, we propose a mechanism that allows the agent to build a model of communication acts, i. E. The preconditions it must satisfy to send the message and a description of the expected effects of this message on the system
Ferreira, Emmanuel. "Apprentissage automatique en ligne pour un dialogue homme-machine situé." Thesis, Avignon, 2015. http://www.theses.fr/2015AVIG0206/document.
Full textA dialogue system should give the machine the ability to interactnaturally and efficiently with humans. In this thesis, we focus on theissue of the development of stochastic dialogue systems. Thus, we especiallyconsider the Partially Observable Markov Decision Process (POMDP)framework which yields state-of-the-art performance on goal-oriented dialoguemanagement tasks. This model enables the system to cope with thecommunication ambiguities due to noisy channel and also to optimize itsdialogue management strategy directly from data with Reinforcement Learning (RL)methods.Considering statistical approaches often requires the availability of alarge amount of training data to reach good performance. However, corpora of interest are seldom readily available and collectingsuch data is both time consuming and expensive. For instance, it mayrequire a working prototype to initiate preliminary experiments with thesupport of expert users or to consider other alternatives such as usersimulation techniques.Very few studies to date have considered learning a dialogue strategyfrom scratch by interacting with real users, yet this solution is ofgreat interest. Indeed, considering the learning process as part of thelife cycle of a system offers a principle framework to dynamically adaptthe system to new conditions in an online and seamless fashion.In this thesis, we endeavour to provide solutions to make possible thisdialogue system cold start (nearly from scratch) but also to improve its ability to adapt to new conditions in operation (domain extension, new user profile, etc.).First, we investigate the conditions under which initial expertknowledge (such as expert rules) can be used to accelerate the policyoptimization of a learning agent. Similarly, we study how polarized userappraisals gathered throughout the course of the interaction can beintegrated into a reinforcement learning-based dialogue manager. Morespecifically, we discuss how this information can be cast intosocially-inspired rewards to speed up the policy optimisation for bothefficient task completion and user adaptation in an online learning setting.The results obtained on a reference task demonstrate that a(quasi-)optimal policy can be learnt in just a few hundred dialogues,but also that the considered additional information is able tosignificantly accelerate the learning as well as improving the noise tolerance.Second, we focus on reducing the development cost of the spoken language understanding module. For this, we exploit recent word embedding models(projection of words in a continuous vector space representing syntacticand semantic properties) to generalize from a limited initial knowledgeabout the dialogue task to enable the machine to instantly understandthe user utterances. We also propose to dynamically enrich thisknowledge with both active learning techniques and state-of-the-artstatistical methods. Our experimental results show that state-of-the-artperformance can be obtained with a very limited amount of in-domain andin-context data. We also show that we are able to refine the proposedmodel by exploiting user returns about the system outputs as well as tooptimize our adaptive learning with an adversarial bandit algorithm tosuccessfully balance the trade-off between user effort and moduleperformance.Finally, we study how the physical embodiment of a dialogue system in a humanoid robot can help the interaction in a dedicated Human-Robotapplication where dialogue system learning and testing are carried outwith real users. Indeed, in this thesis we propose an extension of thepreviously considered decision-making techniques to be able to take intoaccount the robot's awareness of the users' belief (perspective taking)in a RL-based situated dialogue management optimisation procedure
Ramdani, Mohammed. "Système d'induction formelle à base de connaissances imprécises." Paris 6, 1994. http://www.theses.fr/1994PA066237.
Full textRafflin, catherine. "Conception d'un système de programmation et de commande de robots mobiles par apprentissage." Montpellier 2, 1995. http://www.theses.fr/1995MON20093.
Full textGarlet, Milani Luís Felipe. "Autotuning assisté par apprentissage automatique de tâches OpenMP." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM022.
Full textModern computer architectures are highly complex, requiring great programming effort to obtain all the performance the hardware is capable of delivering. Indeed, while developers know potential optimizations, the only feasible way to tell which of them is faster for some platform is to test it. Furthermore, the many differences between two computer platforms, in the number of cores, cache sizes, interconnect, processor and memory frequencies, etc, makes it very challenging to have the same code perform well over several systems. To extract the most performance, it is often necessary to fine-tune the code for each system. Consequently, developers adopt autotuning to achieve some degree of portable performance. This way, the potential optimizations can be specified once, and, after testing each possibility on a platform, obtain a high-performance version of the code for that particular platform. However, this technique requires tuning each application for each platform it targets. This is not only time consuming but the autotuning and the real execution of the application differ. Differences in the data may trigger different behaviour, or there may be different interactions between the threads in the autotuning and the actual execution. This can lead to suboptimal decisions if the autotuner chooses a version that is optimal for the training but not for the real execution of the application. We propose the use of autotuning for selecting versions of the code relevant for a range of platforms and, during the execution of the application, the runtime system identifies the best version to use using one of three policies we propose: Mean, Upper Confidence Bound, and Gradient Bandit. This way, training effort is decreased and it enables the use of the same set of versions with different platforms without sacrificing performance. We conclude that the proposed policies can identify the version to use without incurring substantial performance losses. Furthermore, when the user does not know enough details of the application to configure optimally the explore-then-commit policy usedy by other runtime systems, the more adaptable UCB policy can be used in its place
Lévy, Benjamin. "Principes et architectures pour un système interactif et agnostique dédié à l’improvisation musicale." Paris 6, 2013. http://www.theses.fr/2013PA066652.
Full textThe work presented in this thesis focuses on the conception and realization of a software capable of pertinent interaction with acoustic musicians in a collective free improvisation, that is an improvisation without any predetermined knowledge of structures, rules or style. It is extended at the end of our work with considerations on emerging properties such as pulse or a broad notion of harmony. The OMax project proposes to approach this problem of non-idiomatic improvisation by learning and mimicking the style of a musician with an agnostic and incremental knowledge model. We take this computer system as our work basis and examine carefully three aspects: the conceptual principles of the system, the software architectures for effective implementations and the real-life usage of this system in numerous testing and concerts situations. Besides a thorough study of all the conceptual elements of the system based on anthropomorphic decomposition of its parts, our main contribution is the design and realization of several variations of the OMax system. Our work has been also strongly coupled with the testing of our prototypes with several leading musicians
Nicolas, Jacques. "Ally, un systeme logique pour la generalisation en apprentissage automatique." Rennes 1, 1987. http://www.theses.fr/1987REN10043.
Full textBooks on the topic "Système en apprentissage automatique"
Brigitte, Grau, and Chevallet Jean-Pierre, eds. La recherche d'informations précises: Traitement automatique de la langue, apprentissage et connaissances pour les systèmes de question-réponse. Paris: Hermès science publications, 2008.
Find full textThe design and analysis of efficient learning algorithms. Cambridge, Mass: MIT Press, 1992.
Find full textSupport vector machines for pattern classification. 2nd ed. London: Springer, 2010.
Find full textMarco, Colombetti, ed. Robot shaping: An experiment in behavior engineering. Cambridge, Mass: MIT Press, 1998.
Find full textBareiss, Ray. Exemplar-based knowledge acquisition: A unified approach to concept representation, classification, and learning. Boston: Academic Press, 1989.
Find full textBouchard, Gérard. Reconstitution automatique des familles: Le système SOREP. Chicoutimi: SOREP, Centre interuniversitaire de recherches sur les populations, 1985.
Find full textAdriaans, Pieter. Data mining. Harlow, England: Addison-Wesley, 1996.
Find full textBorchardt, Gary C. Thinking between the lines: Computers and the comprehension of causaldescriptions. Cambridge, Mass: MIT Press, 1994.
Find full textBorchardt, Gary C. Thinking between the lines: Computers and the comprehension of causal descriptions. Cambridge, Mass: MIT Press, 1994.
Find full textSilberztein, Max. Dictionnaires électroniques et analyse automatique de textes: Le système INTEX. Paris: Masson, 1993.
Find full textBook chapters on the topic "Système en apprentissage automatique"
Nadeau, David, and Nicole Tourigny. "Évaluation d’un Système pour le Résumé Automatique de Documents ÉLectroniques." In Advances in Artificial Intelligence, 277–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45153-6_27.
Full textDRIF, Ahlem, Saad Eddine SELMANI, and Hocine CHERIFI. "Réseau interactif et apprentissage automatique pour les recommandations." In Optimisation et apprentissage, 123–51. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch5.
Full textOkome Engouang, Liliane, and Liza Gladys Boukandou Kombila. "La TA et la TAO dans le processus d’enseignement/apprentissage de l’espagnol et du français en classe universitaire au Gabon." In L’enseignement-apprentissage en/des langues européennes dans les systèmes éducatifs africains : place, fonctions, défis et perspectives, 319–35. Observatoire européen du plurilinguisme, 2020. http://dx.doi.org/10.3917/oep.kouam.2020.01.0319.
Full textFLEURY SOARES, Gustavo, and Induraj PUDHUPATTU RAMAMURTHY. "Comparaison de modèles d’apprentissage automatique et d’apprentissage profond." In Optimisation et apprentissage, 153–71. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch6.
Full textLoffler-Laurian, Anne-Marie. "Chapitre II. Histoire d’un système de traduction automatique : SYSTRAN." In La traduction automatique, 47–63. Presses universitaires du Septentrion, 1996. http://dx.doi.org/10.4000/books.septentrion.74864.
Full textATIEH, Mirna, Omar MOHAMMAD, Ali SABRA, and Nehme RMAYTI. "IdO, apprentissage profond et cybersécurité dans la maison connectée : une étude." In Cybersécurité des maisons intelligentes, 215–56. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9086.ch6.
Full textLoffler-Laurian, Anne-Marie. "Chapitre III. Évaluation et utilisation d’un système de traduction automatique : le cas de SYSTRAN." In La traduction automatique, 65–75. Presses universitaires du Septentrion, 1996. http://dx.doi.org/10.4000/books.septentrion.74869.
Full textDE’ FAVERI TRON, Alvise. "La détection d’intrusion au moyen des réseaux de neurones : un tutoriel." In Optimisation et apprentissage, 211–47. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch8.
Full textYAHYAOUI, Khadidja. "Approche hybride pour la navigation autonome des robots mobiles." In Optimisation et apprentissage, 173–209. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch7.
Full textMOKNI, Marwa, and Sonia YASSA. "Ordonnancement du flux de travail IoT basé sur la qualité de service." In Optimisation et apprentissage, 29–57. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch2.
Full textConference papers on the topic "Système en apprentissage automatique"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Full textJacques, J., F. Fumex, J. Privat, F. Pinard, U. Chaput, JC Valats, F. Cholet, et al. "Anastomose choledoco-bulbaire sous écho-endoscopie par système Hot-AXIOS: étude multicentrique française d'évaluation de l'efficacité du système après apprentissage." In Journées Francophones d'Hépato-Gastroentérologie et d'Oncologie Digestive (JFHOD). Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1680864.
Full textReports on the topic "Système en apprentissage automatique"
Motulsky, Aude, Jean Noel Nikiema, Philippe Després, Alexandre Castonguay, Martin Cousineau, Joé T. Martineau, Cécile Petitgand, and Catherine Régis. Promesses de l’IA en santé - Fiche 2. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, March 2022. http://dx.doi.org/10.61737/votf6751.
Full textGreen, A. W., J. B. Wood, and L. R. Wilson. Système d'observatoire automatique de l'USGS. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/226594.
Full text