To see the other types of publications on this topic, follow the link: Systeme dynamiques hyperboliques.

Dissertations / Theses on the topic 'Systeme dynamiques hyperboliques'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 37 dissertations / theses for your research on the topic 'Systeme dynamiques hyperboliques.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Leclerc, Gaétan. "Nonlinearity, fractals, Fourier decay - harmonic analysis of equilibrium states for hyperbolic dynamical systems." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS264.

Full text
Abstract:
Ce doctorat se situe à l'intersection entre le domaine de la géométrie fractale et des systèmes dynamique hyperbolique. Étant donné un système dynamique hyperbolique dans un espace euclidien (de petite dimension), considérons un sous-ensemble fractal compact invariant, ainsi qu'une mesure de probabilité invariante supportée sur cet ensemble fractal, avec de bonnes propriétés statistiques, telle que la mesure d'entropie maximale. La question est la suivante : la transformée de Fourier de la mesure tends elle vers zéro a la vitesse d'une puissance de xi ? Notre objectif principal est de montrer que, pour plusieurs familles de systèmes dynamiques hyperboliques, la non-linéarité de la dynamique suffit à démontrer de tels résultats de décroissance. Ces énoncés seront obtenus en utilisant un outil puissant du domaine de la combinatoire additive : le phénomène de somme-produit
This PhD lies at the intersection between fractal geometry and hyperbolic dynamics. Being given a (low dimensional) hyperbolic dynamical system in some euclidean space, let us consider a fractal compact invariant subset, and an invariant probability measure supported on this fractal set with good statistical properties, such as the measure of maximal entropy. The question is the following: does the Fourier transform of the measure exhibit power decay ? Our main goal is to give evidence, for several families of hyperbolic dynamical systems, that nonlinearity of the dynamics is enough to prove such decay results. These statements will be obtained using a powerful tool from the field of additive combinatorics: the sum-product phenomenon
APA, Harvard, Vancouver, ISO, and other styles
2

Gossart, Luc. "Opérateurs de transfert de systèmes dynamiques partiellement hyperboliques aléatoires." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM062.

Full text
Abstract:
Cette thèse s'intéresse aux opérateurs de transfert d'extensions circulaires d'applications hyperboliques. On y obtient un résultat de convergence en loi dans un régime semi-classique (temps d'Ehrenfest) pour les traces plates des opérateurs de transfert réduits, lorsque la fonction toit est aléatoire
In this thesis, we are interested in transfer operators associated with circle extensions of hyperbolic maps. We show a convergence in law of the flat traces of the reduced transfer operators, up to an Ehrenfest time, when the roof function is random
APA, Harvard, Vancouver, ISO, and other styles
3

Lamare, Pierre-Olivier. "Contrôle de systèmes hyperboliques par analyse Lyapunov." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM062/document.

Full text
Abstract:
Dans cette thèse nous avons étudié différents aspects pour le contrôle de systèmes hyperboliques.Tout d'abord, nous nous sommes intéressés à des systèmes hyperboliques à commutations. Cela signifie qu'il existe une interaction entre une dynamique continue et une dynamique discrète. Autrement dit, il existe différents modes dans lesquels peut évoluer la dynamique continue: ces modes sont dictés par la dynamique discrète. Ce changement de mode peut être contrôlé (dans le cas d'une boucle fermée), ou non-contrôlé (dans le cas d'une boucle ouverte). Nous nous sommes intéressés au premier cas. Par une analyse Lyapunov nous avons construit trois règles de commutations capables de stabiliser le système. Nous avons montré comment modifier deux d'entre elles pour obtenir des propriétés de robustesse et de stabilité entrée-état. Ces règles de commutations ont été testées numériquement.Ensuite, nous avons considéré la génération de trajectoire pour des systèmes hyperboliques linéaires 2x2 par backstepping. L'étape suivante a été de considérer une action Proportionnelle-Intégrale pour stabiliser la solution du système autour de la trajectoire de référence. Pour cela nous avons construit une fonction Lyapunov non-diagonale. Nous avons montré que l'action intégrale est capable de rejeter des erreurs distribuées et frontières.Enfin, nous avons considéré des aspects numériques pour l'analyse Lyapunov. Les conditions pour la stabilité et la conception de contrôleurs obtenues par des fonctions de Lyapunov quadratiques font intervenir une infinité d'inégalités matricielles. Nous avons montré que cette complexité peut être réduite en considérant une sur-approximation polytopique de ces contraintes.Les résultats obtenus ont été illustrés par des exemples académiques et des systèmes dynamiques physiques (comme les équations de Saint-Venant et les équations de Aw-Rascle-Zhang)
In this thesis we have considered different aspects for the control of hyperbolic systems.First, we have studied switched hyperbolic systems. They contain an interaction between a continuous and a discrete dynamics. Thus, the continuous dynamics may evolve in different modes: these modes are imposed by the discrete dynamics. The change in the mode may be controlled (in case of a closed-loop system), or may be uncontrolled (in case of an open-loop system). We have focused our interest on the former case. We procedeed with a Lyapunov analysis, and construct three switching rules. We have shown how to modify them to get robustness and ISS properties. We have shown their effectiveness with numerical tests.Then, we have considered the trajectory generation problem for 2x2 linear hyperbolic systems. We have solved it with backstepping. Then, we have considered the tracking problem with a Proportionnal-Integral controller. We have shown that it stabilizes the error system around the reference trajectory with a new non-diagonal Lyapunov function. The integral action has been shown to be able to reject in-domain, as well as boundary disturbances.Finally, we have considered numerical aspects for the Lyapunov analysis. The conditions for the stability and design of controllers by quadratic Lyapunov functions involve an infinity of matrix inequalities. We have shown how to reduce this complexity by polytopic embeddings of the constraints.Many obtained results have been illustrated by academic examples and physically relevant dynamical systems (as Shallow-Water equations and Aw-Rascle-Zhang equations)
APA, Harvard, Vancouver, ISO, and other styles
4

Coudène, Yves. "Ergodicite du feuilletage stable des flots hyperboliques definis sur un revetement abelien." Palaiseau, Ecole polytechnique, 2000. http://www.theses.fr/2000EPXX0014.

Full text
Abstract:
Soit t un flot hyperbolique et t son extension a un revetement abelien. Cette these est consacree a l'etude du feuilletage stable fort de t. Apres quelques rappels sur les systemes hyperboliques, on montre que ce feuilletage est ergodique des qu'il est transitif ; un certain nombre d'exemples sont ensuite etudies : suspensions d'anosov, flots geodesiques, sous-groupes de psl 2(c).
APA, Harvard, Vancouver, ISO, and other styles
5

Bouloc, Damien. "Géométrie et topologie de systèmes dynamiques intégrables." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30099/document.

Full text
Abstract:
Dans cette thèse, on s'intéresse à deux aspects différents des systèmes dynamiques intégrables. La première partie est dévouée à l'étude de trois familles de systèmes hamiltoniens intégrables : les systèmes de pliage de Kapovich et Millson sur les espaces de modules de polygones 3D de longueurs de côtés fixées, les systèmes de Gelfand-Cetlin introduits par Guillemin et Sternberg sur les orbites coadjointes du groupe de Lie U(n), et une famille de systèmes définie par Nohara et Ueda sur la variété grassmannienne Gr(2,n). Dans chaque cas on montre que les fibres singulières de l'application moment sont des sous-variétés plongées et on en donne des modèles géométriques sous la forme de variétés quotients. La deuxième partie poursuit une étude initiée par Zung et Minh sur les actions totalement hyperboliques de Rn sur des variétés compactes de dimension n, qui apparaissent naturellement lors de l'étude des systèmes non-hamiltoniens intégrables dont toutes les singularités sont non-dégénérées. On s'intéresse au flot engendré par l'action d'un vecteur générique de Rn. On donne une définition d'indice pour ses singularités qu'on relie à la théorie de Morse classique, et on utilise ce flot pour obtenir des résultats sur le nombres d'orbites de dimension donnée. Une étude plus poussée est effectuée en dimension 2, et en particulier sur la sphère S2, où les orbites de l'action dessinent un graphe plongé dont on analyse la combinatoire. On termine en construisant explicitement des exemples d'actions hyperboliques en dimension 3 sur la sphère S3 et dans l'espace projectif RP3
In this thesis, we are interested in two different aspects of integrable dynamical systems. The first part is devoted to the study of three families of integrable Hamiltonian systems: the systems of bending flows of Kapovich and Millson on the moduli spaces of 3D polygons with fixed side lengths, the Gelfand-Cetlin systems introduced by Guillemin and Sternberg on the coadjoint orbits of the Lie group U(n), and a family of integrable systems defined by Nohara and Ueda on the Grassmannian Gr(2,n). In each case we prove that the fibers of the momentum map are embedded submanifolds for which we give geometric models in terms of quotients manifolds. In the second part we carry on with a study initiated by Zung and Minh of the totally hyperbolic actions of R^n on compact n-dimensional manifolds that appear naturally when investigating integrable non-hamiltonian systems with nondegenerate singularities. We study the flow generated by the action of a generic vector in Rn. We define a notion of index for its singularities and we use this flow to obtain results on the number of orbits of given dimension. We investigate further the 2-dimensional case, and more particularly the case of the sphere S2, where the orbits of the action draw an embedded graph of which we analyse the combinatorics. Finally, we provide explicit examples of totally hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3
APA, Harvard, Vancouver, ISO, and other styles
6

Reygner, Julien. "Comportements en temps long et à grande échelle de quelques dynamiques de collision." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066471/document.

Full text
Abstract:
Cette thèse comporte trois parties essentiellement indépendantes, dont chacune est consacrée à l'étude d'un système de particules, suivant une dynamique déterministe ou aléatoire, et à l'intérieur duquel les interactions se font uniquement aux collisions entre les particules.La Partie I propose une étude numérique et théorique des états stationnaires hors de l'équilibre du Modèle d'Échange Complet, introduit en physique pour comprendre le transport de la chaleur dans certains matériaux poreux.La Partie II est consacrée à un système de particules browniennes évoluant sur la droite réelle et interagissant à travers leur rang. Le comportement limite de ce système, en temps long et à grand nombre de particules, est décrit, puis les résultats sont appliqués à l'étude d'un modèle de marché financier dit modèle d'Atlas en champ moyen.La Partie III introduit une version multitype du système de particules étudié dans la partie précédente, qui permet d'approcher des systèmes paraboliques d'équations aux dérivées partielles non-linéaires. La limite petit bruit de ce système est appelée dynamique des particules collantes multitype et approche cette fois des systèmes hyperboliques. Une étude détaillée de cette dynamique donne des estimations de stabilité en distance de Wasserstein sur les solutions de ces systèmes
This thesis contains three independent parts, each one of which is dedicated to the study of a particle system, following either a deterministic or a stochastic dynamics, and in which interactions only occur at collisions. Part I contains a numerical and theoretical study of nonequilibrium steady states of the Complete Exchange Model, which was introduced by physicists in order to understand heat transfer in some porous materials. Part II is dedicated to a system of Brownian particles evolving on the real line and interacting through their ranks. The long time and mean-field behaviour of this system is described, then the results are applied to the study of a model of equity market called the mean-field Atlas model. Part III introduces a multitype version of the particle system studied in the previous part, which allows to approximate parabolic systems of nonlinear partial differential equations. The small noise limit of of this system is called multitype sticky particle dynamics and now approximates hyperbolic systems. A detailed study of this dynamics provides stability estimates in Wasserstein distance for the solutions of these systems
APA, Harvard, Vancouver, ISO, and other styles
7

Le, Ba Khiet. "Stabilité des systèmes dynamiques non-réguliers et applications." Limoges, 2013. http://www.theses.fr/2013LIMO4054.

Full text
Abstract:
L'objectif principal de cette thèse est de proposer une formulation pour l'étude et l'analyse de stabilité des systèmes dynamiques non-réguliers avec une attention particulière aux applications issues des circuits électriques et des systèmes mécaniques avec frottement sec. Les outils mathématiques utilisés sont issus de l'analyse non-lisse et de la théorie de stabilité au sens de Lyapounov. Dans le détail, nous utilisons un formalisme pour modéliser la complémentarité des systèmes de commutation simples et des inclusions différentielles pour modéliser un convertisseur DC-DC de type Buck, les systèmes dynamiques Lagrangian ainsi que les systèmes de Lur'e. Pour chaque modèle, nous nous intéressons à l'existence d'une solution, des propriétés de stabilité des trajectoires, de la stabilité en temps fini ou de mettre une force sur la commande pour obtenir la stabilité en temps fini. Nous proposons aussi quelques méthodes numériques pour simuler ces systèmes. Il est à noter que les méthodes utilisées dans ce manuscrit peuvent être appliquées pour l'analyse de systèmes dynamiques non-réguliers issus d'autres domaines tels que l'économie, la finance ou la biologie. .
This manuscript deals with the stability of non-smooth dynamical systems and applications. More precisely, we aim to provide a formulation to study the stability analysis of non-smooth dynamical systems, particularly in electrical circuits and mechanics with dry friction and robustness. The efficient tools which we have used are non-smooth analysis, Lyapunov stability theorem and non-smooth mathematical frameworks : complementarity and differentials inclusions. In details, we use complementarity formalism to model some simple switch systems and differential inclusions to model a Dc-Dc Buck converter, Lagrange dynamical systems and Lur'e systems. For each model, we are interested in the well-posedness, stability properties of trajectories, even finite-time stability or putting a control force to obtain finite-time stability, and finding numerical ways to simulate the systems. The theoretical results are supported by some examples in electrical circuits and mechanics with numerical simulations. It is noted that the method used in this monograph can be applied to analyze for non-smooth dynamical systems from other fields such as economics, finance or biology. .
APA, Harvard, Vancouver, ISO, and other styles
8

Monson, Björn. "Pavages de la droite réelle, du demi-plan hyperbolique et automorphismes du groupe libre." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4060/document.

Full text
Abstract:
Dans cette thèse, nous construisons des pavages de la droite réelle et du demi-plan hyperbolique à l’aide de représentants efficaces d’automorphismes IWIP du groupe libre Fn. Dans un premier temps, nous utilisons la substitution définie par P. Arnoux, V. Berthé, A. Siegel, A. Hilion associée à un représentant efficace d’un automorphisme IWIP pour générer des espaces de pavages substitutifs apériodiques de la droite réelle. Nous montrons, en nous servant d’un théorème de connexité des représentants efficaces d’automorphismes IWIP dû à J. Los, que le type topologique de ces espaces de pavages est indépendant du choix du représentant. Nous associons ainsi, à homéomorphisme près, un espace de pavages de la droite réelle à une classe d’automorphisme externe IWIP de Fn, puis à une classe de conjugaison d’un élément IWIP dans Out(Fn). D’autre part, nous construisons à partir des éléments de l’espace de pavage de la droite réelle précédemment construits des pavages faiblement apériodiques pour le groupe des transformations affines du demi-plan hyperbolique. Nous étudions les propriétés topologiques et dynamiques de ces espaces de pavages du plan hyperbolique. Enfin, dans une dernière partie, nous montrons que les espaces de pavages précédemment construits peuvent être munis d’une structure lisse en se servant de leur structure de limite projective
In this thesis, we construct tilings of the real line and the hyperbolic half-plane using train-track maps of IWIP free group automorphisms. One the one hand, we use a substitution defined by P. Arnoux, V. Berthé, A. Siegel, A. Hilion coming from a train-track map of a IWIP free group automorphism to generate substitutive aperiodic tilings of the real line. We show, thanks to a theorem of J. Los about connectivity of train-track representatives of an IWIP automorphism, that the topological type of those tiling spaces is the same up to a choice of train-track representative. Thus we associate, up to an homeomorphism, a tiling space of the real line to a class of an IWIP outer automorphism of Fn, then we extend this result to a conjugacy class of an IWIP element in Out(Fn). On the other hand, we construct from elements of tiling spaces of the real line previously defined, a set of weakly aperiodic for the affine group tilings of the hyperbolic half-plane. We study topological et dynamical properties of the tiling space generated by those hyperbolic tilings. Finally, in the last section we endow tiling spaces previously constructed with a smooth structure thanks to their inverse limit structure
APA, Harvard, Vancouver, ISO, and other styles
9

Villedieu, Philippe. "Approximations de type cinétique du système hyperbolique de la dynamique des gaz hors équilibre thermochimique." Toulouse 3, 1994. http://www.theses.fr/1994TOU30276.

Full text
Abstract:
La simulation numerique d'ecoulements hypersoniques, en raison de la presence d'ondes de choc et de detentes tres violentes, necessite l'utilisation de schemas robustes. L'auteur presente une classe de schemas cinetiques pour les melanges de gaz hors equilibre thermochimique. Il prouve, qu'au premier ordre, ces schemas sont positifs et entropiques sous une condition de type cfl et propose une variante de la methode dite des flux corriges permettant d'augmenter l'ordre de precision de ces schemas tout en preservant leurs proprietes de positivite. L'auteur etudie ensuite la version implicite de ces schemas en se servant de leurs liens avec le modele bgk de l'equation de boltzmann. Il prouve, sans condition sur le pas de temps, l'existence d'une solution pour le probleme implicite en domaine borne et non borne. Une methode iterative de type gauss-seidel, permettant de calculer la solution du probleme implicite non lineaire, est analysee et testee numeriquement pour des calculs d'ecoulements stationnaires bidimensionnels. Des resultats numeriques, pour des cas d'ecoulements hypersoniques bidimensionnels hors equilibre chimique et thermique, sont presentes afin de valider l'approche proposee
APA, Harvard, Vancouver, ISO, and other styles
10

Dutilleul, Tom. "Dynamique chaotique des espaces-temps spatialement homogènes." Thesis, Paris 13, 2019. http://www.theses.fr/2019PA131019.

Full text
Abstract:
En 1963, Belinsky, Khalatnikov et Lifshitz ont proposé une description conjecturale de la géométrie asymptotique des modèles cosmologiques au voisinage de leur singularité initiale. En particulier, il y est avancé que la géométrie asymptotique des espaces-temps spatialement homogènes « génériques » devrait avoir un comportement oscillatoire chaotique modelé sur la dynamique d’une application discrète : l’application de Kasner. Nous démontrons que cette conjecture est vraie au moins pour un ensemble d’espaces-temps de mesure de Lebesgue strictement positive. Dans le contexte des espaces-temps spatialement homogènes, l’équation d’Einstein de la relativité générale se réduit à un système d’équations différentielles sur un espace des phases de dimension finie : les équations de Wainwright-Hsu. La dynamique de ces équations encode l’évolution de la géométrie des hypersurfaces spatiales dans les espaces-temps spatialement homogènes. Notre preuve est basée sur l’hyperbolicité non-uniforme des équations de Wainwright-Hsu. Nous considérons l’application de Poincaré associée aux solutions de ces équations sur une section transverse au flot et nous démontrons qu’il s’agit d’une application non-uniformément hyperbolique avec singularités. Ceci nous permet de construire des variétés stables locales « à la Pesin » pour cette application et de montrer que la réunion des orbites passant par ces variétés stables locales recouvre une partie de l’espace des phases de mesure de Lebesgue strictement positive. Le comportement oscillatoire chaotique des espaces-temps correspondant à ces orbites est une conséquence de cette construction. Du point de vue des systèmes dynamiques, les équations de Wainwright-Hsu se révèlent être très riches et posent un certain nombre de défis. Pour comprendre le comportement asymptotique d’un nombre conséquent de solutions de ces équations, nous serons amenés à : • faire une analyse fine de la dynamique locale d’un champ de vecteurs au voisinage d’une singularité partiellement hyperbolique dégénérée et non linéarisable, • travailler avec des applications non-uniformément hyperboliques ayant des singularités, pour lesquelles la théorie usuelle (due à Pesin et Katok-Strelcyn) ne s’applique pas à cause de la faible régularité de ces applications, • considérer des conditions arithmétiques exotiques exprimées en termes de fractions continues et utiliser des propriétés ergodiques quelque peu sophistiquées de l’application de Gauss pour montrer que ces propriétés sont génériques, etc
In 1963, Belinsky, Khalatnikov and Lifshitz have proposed a conjectural description of the asymptotic geometry of cosmological models in the vicinity of their initial singularity. In particular, it is believed that the asymptotic geometry of generic spatially homogeneous spacetimes should display an oscillatory chaotic behaviour modeled on a discrete map’s dynamics (the so-called Kasner map). We prove that this conjecture holds true, if not for generic spacetimes, at least for a positive Lebesgue measure set of spacetimes. In the context of spatially homogeneous spacetimes, the Einstein field equations can be reduced to a system of differential equations on a finite dimensional phase space: the Wainwright-Hsu equations. The dynamics of these equations encodes the evolution of the geometry of spacelike slices in spatially homogeneous spacetimes. Our proof is based on the non-uniform hyperbolicity of the Wainwright-Hsu equations. Indeed, we consider the return map of the solutions of these equations on a transverse section and prove that it is a non-uniformly hyperbolic map with singularities. This allows us to construct some local stable manifolds à la Pesin for this map and to prove that the union of the orbits starting in these local stable manifolds cover a positive Lebesgue measure set in the phase space. The chaotic oscillatory behaviour of the corresponding spacetimes follows. The Wainwright-Hsu equations turn out to be quite interesting and challenging from a purely dynamical system viewpoint. In order to understand the asymptotic behaviour of (many of) the solutions of these equations, we will in particular be led to: • carry a detailed analysis of the local dynamics of a vector field in the neighborhood of degenerate nonlinearizable partially hyperbolic singularities, • deal with non-uniformly hyperbolic maps with singularities for which the usual theory (due to Pesin and Katok-Strelcyn) is not relevant due to the poor regularity of the maps, • consider some unusual arithmetic conditions expressed in terms of continued fractions and use some rather sophisticated ergodic properties of the Gauss map to prove that these properties are generic
APA, Harvard, Vancouver, ISO, and other styles
11

Trinh, Ngoc Tu. "Étude sur le contrôle / régulation automatique des systèmes non-linéaires hyperboliques." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1195/document.

Full text
Abstract:
Dans cette étude on s'intéresse à la dynamique d'une classe de systèmes non-linéaires décrits par des équations aux dérivées partielles (EDP) du type hyperbolique. L'objectif de l'étude est de construire des lois de contrôle par feedback dynamique de la sortie afin de stabiliser le système autour d'un point d'équilibre d'une part, et, d'autre part, de réguler la sortie vers le point de consigne. Nous considérons la classe des systèmes gouvernés par des EDP quasi-linéaires du type hyperbolique à deux variables indépendantes (une variable temporelle et une variable spatiale). Pour le bien-posé du système dynamique non seulement l'état initial mais aussi certaines conditions frontières doivent être prescrites en cohérence avec les EDP. Nous supposons que l'observation et le contrôle sont ponctuels. Autrement dit l'action du contrôle intervient dans le système via les conditions frontières et l'observation est effectuée aux points de la frontière. Notre étude est motivée par l'observation que de nombreux processus physiques sont modélisés par ce type d'équations EDP. Nous citons, par exemple, des processus tels que flux trafique en transport, flux de gaz dans un réseau de pipeline, échangeurs thermiques en génie des procédés, équations de télégraphe dans des lignes de transmission, canaux d'irrigation en génie civil etc. Nous commençons l'étude par une EDP non-linéaire scalaire. Dans ce cas-là nous proposons un correcteur intégral stabilisant qui assure la régulation de la sortie avec l'erreur statique nulle. Nous prouvons la stabilisation locale du système non-linéaire par le correcteur intégral en construisant une fonctionnelle de Lyapunov appropriée. La conception des correcteurs proportionnels et intégraux (PI) que nous proposons est étendue dans un cadre de systèmes de deux EDP. Nous prouvons la stabilisation du système en boucle fermée à l'aide d'une nouvelle fonctionnelle de Lyapunov. La synthèse des correcteurs PI stabilisants se poursuit dans un cadre de réseaux formés d'un nombre fini de systèmes à deux EDP : réseau étoilé et réseau série en cascade. Les contrôles et les observations se trouvent localisés aux différents nœuds de connexion. Pour ces configurations nous présentons un ensemble de correcteurs PI stabilisants qui assurent la régulation vers le point de consigne. Les correcteurs PI que nous concevons sont validés par des simulations numériques à partir des modèles non-linéaires EDP. La contribution de la thèse, par rapport à la littérature existante, consiste en l'élaboration de nouvelles fonctionnelles de Lyapunov pour une classe de systèmes stabilisés par correcteur PI. En effet une grande quantité de résultats ont été obtenus sur la stabilisation des systèmes hyperboliques par feedback statique de la sortie. Toutefois il existe encore peu de résultats sur la stabilisation de ces systèmes par feedback dynamique de la sortie. L'étude de la thèse est consacrée sur l'élaboration des fonctionnelles de Lyapunov permettant d'obtenir des correcteurs PI stabilisants. L'approche de Lyapunov direct que nous avons proposée a pour l'avantage de permettre d'étudier la robustesse des lois de feedback de la sortie PI vis-à-vis de la non-linéarité. Une autre contribution de la thèse consiste en la construction des programmes de Malab permettant d'effectuer des simulations numériques pour la validation des correcteurs conçus. Pour la résolution numérique des EDP hyperboliques nous avons discrétisé nos systèmes par le schéma numérique de Preissmann. Nous avons chaque fois un système d'équations algébriques non-linéaires à résoudre de façon récurrente. L'apport des simulations numériques nous permet de mieux comprendre la méthodologie applicative de la théorie du contrôle en dimension infinie
In this study we are interested in the dynamics of a class of nonlinear systems described by partial differential equations (PDE) of the hyperbolic type. The aim of the study is to construct control laws by dynamic feedback of the output in order to stabilize the system around an equilibrium point on the one hand and to regulate the output to the set-point. We consider the class of systems governed by hyperbolic PDEs with two independent variables (one time variable and one spatial variable). For the well-posed dynamic system not only the initial state but also certain boundary conditions must be prescribed in coherence with the PDEs. We assume that observation and control are punctual. In other words, the action of the control intervenes in the system via the boundary conditions and the observation is carried out at the points of the border. Our study is motivated by the observation that many physical processes are modeled by this type of PDE equations. Examples include processes such as traffic flow in transportation, gas flows in a pipeline network, heat exchangers in process engineering, telegraph equations in transmission lines, civil engineering irrigation channels, to cite but a few.We begin the study with a scalar nonlinear PDE. In this case we propose a stabilizing integral controller which ensures the regulation of the output with zero static error. We prove the local stabilization of the nonlinear system by the integral controller by constructing an appropriate Lyapunov functional. The design of the proportional and integral (PI) controllers that we propose is extended in a framework of two PDE systems. We prove the stabilization of the closed-loop system with a new Lyapunov functional. The synthesis of stabilizing PI controllers is carried out in a framework of networks formed by a finite number of two PDE systems: star network and serial network in cascade. Controls and observations are located at the different connection nodes. For these configurations we present a set of stabilizing PI controllers that regulate the output to the set-point. The PI controllers that we design are validated by numerical simulations from the nonlinear PDE models. The contribution of the thesis compared to the existing literature consists in the development of new Lyapunov functionals for the class of systems looped by a PI controller. Indeed, a large number of results have been obtained from the stabilization of hyperbolic systems by static feedback of the output. However, there are still few results with the stabilization of these systems by the output dynamic feedback. The study of the thesis is devoted to the development of the Lyapunov functional to obtain stabilizing PI controllers. The direct Lyapunov approach that we have proposed has the advantage of allowing to study the robustness of the output dynamic feedback laws in the form of PI controllers with respect to the nonlinearity. Another contribution of the thesis consists of the Malab program construction allowing to carry out numerical simulations for the validation of the conceived controllers. For the numerical resolution of hyperbolic PDEs, we have discretized our systems using the Preissmann numerical scheme. Each time moment we have a system of non-linear algebraic equations to be solved in a recurring way. The contribution of numerical simulations allows us to better understand the application methodology of the infinite dimension control theory
APA, Harvard, Vancouver, ISO, and other styles
12

Le, Floch Philippe. "Contributions a l'etude theorique et a l'approximation de systemes hyperboliques non lineaires : application aux equations de la dynamique des gaz." ePalaiseau, Ecole polytechnique, 1988. http://www.theses.fr/1988EPXXX001.

Full text
Abstract:
Developpement asymptotique de la solution du probleme de riemann generalise et application au systeme de la dynamique des gaz. Conditions aux limites pour des systemes de lois de conservation. Definition d'une solution faible entropique d'un systeme hyperbolique non lineaire sous forme non conservative. Application des resultats a la dynamique des gaz et a un systeme d'elastodynamique
APA, Harvard, Vancouver, ISO, and other styles
13

Croisille, Jean-Pierre. "Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces /." Châtillon-sous-Bagneux : Office national d'études et de recherches aérospatiales, 1991. http://catalogue.bnf.fr/ark:/12148/cb354820586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Maïzi, Nadia. "Réduction au sens de la norme de Hankel de modèles dynamiques de dimension infinie." Phd thesis, École Nationale Supérieure des Mines de Paris, 1992. http://tel.archives-ouvertes.fr/tel-00410522.

Full text
Abstract:
L'objet de cette thèse est d'étudier l'applicabilité de la méthode d'approximation rationnelle en norme de Hankel à des systèmes dynamiques linéaires de dimension d'état infinie. On illustre par trois exemples concrets les possibilités d'utilisation des techniques d'approximation développées ces dernières années, notamment par Curtain, Glover et Partington. Les exemples choisis représentent des phénomènes d'évolution décrits par des équations aux dérivées partielles, par rapport au temps et aux variables d'espace. Il s'agit: d'un problème de diffusion de chaleur, de type parabolique, pour lequel les techniques d'approximation s'adaptent assez directement ; de deux problèmes hyperboliques décrivant l'évolution d'une poutre en flexion et en torsion, pour lesquels une méthode originale appelée ``relaxation'' a été mise au point: préalable à l'approximation de Hankel, elle permet son application lorsque les pôes associés au système hyperbolique croissent suffisamment rapidement.
APA, Harvard, Vancouver, ISO, and other styles
15

Mercier, Magali. "Étude de différents aspects des EDP hyperboliques : persistance d’onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10246/document.

Full text
Abstract:
On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bords adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales
In this work, we study hyperbolic systems of balance laws. The first part is devoted to compressible fluid dynamics, and particularly to the lifespan of smooth or piecewise smooth solutions. After presenting the state of art, we show an extension to more general gases of a theorem by Grassin.We also study shock waves solutions: first, we extend T. T. Li's approach to estimate the time of existence in the isentropic spherical case; second, we develop Whitham's ideas to obtain an approximated equation satisfied by the discontinuity surface. In the second part, we set up a new model for a roundabout. This leads us to study a multi-class extension of the macroscopic Lighthill-Whitham-Richards' model. We study the traffic on an infinite road, with some points of junction. We distinguish vehicles according to their origin and destination and add some boundary conditions at the junctions. We obtain existence and uniqueness of a weak entropy solution for the Riemann problem. As a complement, we provide numerical simulations that exhibit solutions with a long time of existence. Finally, the Cauchy problem is tackled by the front tracking method. In the last part, we are interested in scalar hyperbolic balance laws. The first question addressed is the control of the total variation and the stability of entropy solutions with respect to flow and source. With this result, we can study equations with non-local flow, which do not fit into the framework of classical theorems. We show here that these kinds of equations are well posed and we show the Gâteaux-differentiability with respect to initial conditions, which is important to characterize maxima or minima of a given cost functional
APA, Harvard, Vancouver, ISO, and other styles
16

Croisille, Jean-Pierre. "Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces." Paris 6, 1990. http://www.theses.fr/1990PA066095.

Full text
Abstract:
On precise un certain nombre de points relatifs aux changements de variables en thermodynamique (variables extensives, intensives) et en dynamique des gaz (variables conservatives, entropiques). Le systeme des equations d'euler compressibles pour les melanges de gaz est decrit sous l'angle thermodynamique sans considerer une loi d'etat particuliere pour la pression. La notion de systeme k-diagonalisable traduit en un seul formalisme l'aspect a la fois symetrique et cinetique du systeme des equations d'euler et permet de generaliser la decomposition du jacobien des equations par le signe des valeurs propres en une decomposition de type cinetique. Une methode d'approximation par elements finis de type galerkin-discontinu est proposee faisant intervenir variables entropiques et decomposition cinetique. Quelques-unes de ses proprietes sont degagees. On considere aussi le cas des systemes de friedrichs. Une methode de raffinement de maillage originale est ensuite mise en uvre en bidimensionnel
APA, Harvard, Vancouver, ISO, and other styles
17

Coulombel, Jean-François. "Stabilite multidimensionnelle d'interfaces dynamiques. Application aux transitions de phase liquide-vapeur." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2002. http://tel.archives-ouvertes.fr/tel-00002134.

Full text
Abstract:
On s'interesse dans ce travail a la stabilite des ondes de
choc pour des systemes hyperboliques de lois de conservation
multidimensionnels. Ce probleme a ete traite par Andrew
Majda sous une hypothese, dite de stabilite uniforme, qui
intervient de facon cruciale dans son analyse. Cette hypothese
est cependant mise en defaut dans certains exemples, par exemple
dans l'etude des transitions de phase liquide-vapeur. Nous
examinons ici la stabilite des interfaces qui ne verifient
pas l'hypothese de stabilite uniforme, et montrons comment les
resultats de Majda s'etendent a de telles discontinuites.


On commence par montrer la stabilite lineaire des chocs plans
faiblement stables, a l'aide d'un symetriseur de Kreiss
degenere qui tient compte des modes neutralement instables.
Cette premiere etape etablit un compte precis des pertes de
derivees intervenant dans les estimations d'energie. Dans un
second temps, nous montrons que ces estimations d'energie demeurent
valables lorsque l'on etudie la stabilite des interfaces (non
planes) proches d'un choc plan. L'utilisation du calcul
paradifferentiel nous permet de traiter des perturbations
peu regulieres du choc plan initial. Sous une hypothese de
petitesse sur le comportement global des courbes bicaracteristiques, nous montrons une estimation d'energie semblable a celle etablie pour le probleme linearise a coefficients constants. Ce resultat devrait permettre de montrer la stabilite non lineaire des ondes de choc faiblement stables.
APA, Harvard, Vancouver, ISO, and other styles
18

Sedro, Julien. "Étude de systèmes dynamiques avec perte de régularité." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS254/document.

Full text
Abstract:
L'objet de cette thèse est le développement d'un cadre unifié pour étudier la régularité de certains éléments caractéristiques des dynamiques chaotiques (pression/entropie topologique, mesure de Gibbs, exposants de Lyapunov) par rapport à la dynamique elle même. Le principal problème technique est la perte de régularité venant de l'utilisation d'un opérateur de composition, l'opérateur de transfert, dont les propriétés spectrales sont intimement liées aux "éléments caractéristiques" ci-dessus. Pour surmonter ce problème, nous établissons un théorème de régularité par rapport aux paramètres pour des points fixes, dans un esprit proche du théorème des fonctions implicites de Nash Moser. Nous appliquons ensuite cette approche "point fixe" au problème de la réponse linéaire (régularité de la mesure invariante du système par rapport aux paramètres) pour une famille de dynamiques uniformément dilatantes. Dans un second temps, nous étudions la régularité du plus grand exposant de Lyapunov d'un produit aléatoire d'applications dilatantes, s'appuyant sur notre théorème de régularité et la théorie des contractions de cônes. Nous en déduisons la régularité par rapport aux paramètres de la mesure stationnaire, de la variance dans le théorème limite central, et d'autres quantités dynamiques d'intérêt
The aim of this thesis is the development of a unified framework to study the regularity of certain characteristics elements of chaotic dynamics (Topological presure/entropy, Gibbs measure, Lyapunov exponents) with respect to the dynamic itself. The main technical issue is the regularity loss occuring from the use of a composition operator, the transfer operator, whose spectral properties are intimately connected to the aformentionned "characteristics elements". To overcome this issue, we developped a regularity theorem for fixed points (with respect to parameter), in the spirit of the implicit function theorem of Nash and Moser. We then apply this "fixed point" approach to the linear response problem (studying the regularity of the system invariant measure w.r.t parameters) for a family of uniformly expanding maps. In a second time, we study the regularity of the top characteristic exponent of a random prduct of expanding maps, building from our regularity theorem and cone contraction theory. We deduce from this regularity w.r.t parameters for the stationanry measure, the variance in the central limit theorem, and other quantities of dynamical interest
APA, Harvard, Vancouver, ISO, and other styles
19

Pène, Françoise. "Applications des proprietes stochastiques des systemes dynamiques de type hyperbolique : ergodicite du billard dispersif dans le plan, moyennisation d'equations differentielles perturbees par un flot ergodique." Rennes 1, 2000. http://www.theses.fr/2000REN10161.

Full text
Abstract:
Dans ce travail, nous abordons plusieurs questions liees aux proprietes stochastiques (decorrelation, theoreme central limite) de systemes dynamiques de type hyperbolique. La premiere partie est consacree au billard dispersif etudie par y. Sinai et ses collaborateurs. Nous considerons le systeme billard pour des obstacles dispersifs repartis periodiquement dans le plan. L'ergodicite du systeme billard de mesure finie obtenu par quotient sur le tore a ete etablie par y. Sinai. Nous montrons ici l'ergodicite du systeme billard dans le plan. Les preuves reposent sur les proprietes des feuilletages contractant et dilatant et sur le theoreme central limite. Ces resultats preliminaires sont rappeles dans la premiere partie et en annexe. Nous donnons en particulier une presentation de la methode developpee par l. -s. Young pour la decorrelation avec vitesse exponentielle et le theoreme central limite. La seconde partie est consacree a une application des proprietes stochastiques des systemes dynamiques a un probleme provenant de l'analyse : la methode de moyennisation pour des equations differentielles perturbees par un flot. Nous nous placons dans la situation ou le flot est representable comme un flot special au-dessus d'un systeme de type hyperbolique. Nous etablissons un resultat de convergence en loi vers un processus gaussien et obtenons des estimations en norme 1 pour l'ecart entre la solution de l'equation differentielle perturbee et celle de l'equation moyennee. Ces resultats sont etablis sous une condition de decorrelation multiple avec vitesse exponentielle, que nous verifions pour differents systemes (par exemple, pour le flot billard dispersif dans le tore traite dans la premiere partie). La question de l'optimalite
APA, Harvard, Vancouver, ISO, and other styles
20

Monclair, Daniel. "Dynamique lorentzienne et groupes de difféomorphismes du cercle." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01061010.

Full text
Abstract:
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d'isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulièrement lorsque le groupe exhibe une dynamique non triviale (action non propre). Le groupe d'isométries agit naturellement sur le cercle par difféomorphismes, et les résultats principaux portent sur la classification de ces représentations. Sous une hypothèse sur le bord conforme, on obtient une conjugaison par homéomorphisme avec l'action projective d'un sous-groupe de PSL(2,R) ou de l'un de ses revêtements finis. La différentiabilité de la conjuguante est étudiée, avec des résultats qui garantissent une conjugaison dans le groupe de difféomorphismes du cercle dans certains cas. On donne également des contre-exemples à l'existence d'une conjugaison différentiable, y compris pour des groupes ayant une dynamique riche. Ces constructions s'appuient sur l'étude de flots hyperboliques en dimension trois. Sans l'hypothèse sur le bord conforme, on obtient une semi conjugaison et un isomorphisme de groupes. On construit également des exemples pour lesquels il n'existe pas de conjugaison topologique. La seconde partie de cette thèse étudie un espace-temps vu comme un système dynamique multi-valuée : à un point on associe sont futur causal. Cette approche, déjà présente dans les travaux de Fathi et Siconolfi, permet de concrétiser le lien entre fonctions de Lyapunov en systèmes dynamiques et fonctions temps. Le résultat principal est une version lorentzienne du Théorème de Conley : on peut définir l'ensemble récurrent par chaînes d'un espace-temps, et il existe une fonction continue croissante le long de toute courbe causale orientée vers le futur, strictement croissante si le point de départ de la courbe n'est pas dans l'ensemble récurrent par chaînes. Ces techniques s'adaptent aussi dans un espace-temps stablement causal, ce qui permet de donner une nouvelle preuve d'une partie du Théorème d'Hawking.
APA, Harvard, Vancouver, ISO, and other styles
21

Lécureux-Mercier, Magali. "Étude de différents aspects des EDP hyperboliques : persistance d'onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00452936.

Full text
Abstract:
On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bord adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales.
APA, Harvard, Vancouver, ISO, and other styles
22

Nguyen, Quang Long. "Adaptation dynamique de maillage pour les écoulements diphasiques en conduites pétrolières : Application à la simulation des phénomènes de terrain slugging et severe slugging." Paris 6, 2009. https://tel.archives-ouvertes.fr/tel-01583888.

Full text
Abstract:
Nous nous intéressons à la simulation des écoulements diphasiques en conduites pétrolières. Le transport diphasique est modélisé par un système de lois de conservation composé de trois EDPs et fermé par deux lois fortement non-linéaires. Pour pouvoir utiliser de grands pas de temps tout en garantissant la positivité du schéma numérique, nous proposons de combiner la méthode de relaxation avec la décomposition Lagrange-Projection. Le schéma semi-implicite résultant garantit la stabilité et la positivité du schéma sous une condition CFL basée sur la vitesse de transport. Le gain en temps CPU par rapport à un schéma Eulérien est de l'ordre 3. Pour accroître cette performance nous utilisons la méthode d'approximation par Multirésolution qui repose sur une analyse multi-échelle de la régularité locale de la solution. Ensuite, nous la couplons à une méthode de Pas de Temps Local. En effet, adapter localement le pas de temps à la taille de la cellule sous une condition CFL donnée permet de réduire le nombre d'appels aux lois de fermeture. Par conséquent, nous obtenons des gains en temps CPU significatifs pour des cas-tests réalistes
APA, Harvard, Vancouver, ISO, and other styles
23

Mercier, Magali. "Étude de différents aspects des EDP hyperboliques : persistance d'onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00705215.

Full text
Abstract:
On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bords adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales.
APA, Harvard, Vancouver, ISO, and other styles
24

Nguyen, Thi Nhu Thao. "Modélisation mathématique et simulation de la dynamique spatiale de populations de campagnols dans l’est de la France." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD031.

Full text
Abstract:
L'objectif principal de la thèse est de proposer et d'analyser des modèles mathématiques basés sur des équations aux dérivées partielles (EDP) afin de décrire la dynamique spatiale de deux espèces de campagnols (Microtus arvalis et Arvicola terrestris), qui sont particulièrement surveillés dans l'est de la France. Les modèles que nous avons proposés reposent sur des EDP qui décrivent l'évolution de la densité de la population de campagnols en fonction du temps, de l'âge et de la position dans l'espace. Nous avons suivi deux approches complémentaires pour représenter la dynamique. Dans la première approche, nous avons proposé un premier modèle qui consiste en une EDP scalaire en structurée en temps, en âge, et en espace. Elle est complétée par une condition au bord non locale. Le flux est linéaire à coefficient constant dans la direction de l'âge mais contient un terme non local dans les directions de l'espace. De plus, l'équation contient un terme de second ordre par rapport aux variables spatiales. Nous avons démontré l'existence et la stabilité de solutions faibles entropiques pour le modèle en utilisant, la compacité par compensation établie par Panov et un argument du type doublement de variables. Dans la deuxième approche, nous nous sommes inspirés du modèle Multi Agents introduit par Marilleau-Lang-Giraudoux, où la dynamique spatiale des juvéniles est découplée de l'évolution locale dans chaque parcelle. Pour mettre en place ce deuxième modèle, nous avons introduit un graphe orienté dont les nœuds sont les parcelles (ou colonies). Dans chaque nœud, l'évolution de la colonie est décrite par une équation de transport structurée en temps et en âge, et les mouvements de dispersion dans l'espace sont représentés par les passages d'un nœud à un autre. Nous avons proposé une discrétisation du modèle, par des schéma volumes finis, et, grâce à des simulations numériques, nous avons pu illustrer le fait que le modèle est capable de reproduire certaines caractéristiques qualitatives de la dynamique spatiale observée dans la nature. Nous avons ensuite proposé un troisième modèle qui est un système proie-prédateur constitué d'une équation hyperbolique pour les prédateurs et d'une équation parabolique-hyperbolique pour les proies analogue à celle proposée dans le premier modèle. Le terme de force dans l'équation des prédateurs dépend de manière non localement de la densité des proies et les deux équations sont également couplées via des termes sources classiques de type Lotka-Volterra. Nous avons établi l'existence de solutions en appliquant la méthode de la viscosité évanescente, et nous avons établi un résultat de stabilité par un argument de type doublement de variables. Enfin nous avons proposé et validé un schéma de type volumes finis pour le premier modèle.La dernière partie de mes travaux de recherche est dédiée à un projet auquel j'ai participé lors d'une école d'été CEMRACS. Il concerne un sujet de biomathématiques différent du thème principal de la thèse et porte sur un modèle épidémiologique pour la salmonellose. Nous avons proposé un nouveau cadre de modélisation générique multi-échelles de la transmission hétérogène d'agents pathogènes dans une population animale. Au niveau intra-hôte, le modèle décrit l'interaction entre le microbiote commensal, le pathogène et la réponse inflammatoire. Des fluctuations aléatoires de la dynamique écologique du microbiote individuel et de la transmission à l'échelle inter-hôte sont ajoutées pour obtenir un modèle EDP de la distribution des agents pathogènes au niveau de la population. Une extension du modèle a, par ailleurs, été développé pour représenter la transmission entre plusieurs populations. Le comportement asymptotique ainsi que l'impact des stratégies de contrôle, y compris le nettoyage et l'administration d'antimicrobiens, sont étudiés par des simulations numériques
The main objective of the thesis is to propose and analyze mathematical models based on partial differential equations (PDE) to describe the spatial dynamics of two species of voles (Microtus arvalis and Arvicola terrestris), which are particularly monitored in Eastern France. The models that we have proposed are based on PDE which describe the evolution of the density of the population of voles as a function of time, age and position in space. We have two complementary approaches to represent the dynamics. In the first approach, we propose a first model that consists of a scalar PDE depending on time, age, and space supplemented with a non-local boundary condition. The flux is linear with constant coefficient in the direction of age but contains a non-local term in the directions of space. Moreover, the equation contains a second order term in the spatial variables only. We have demonstrated the existence and stability of weak entropy solutions for the model by using, respectively, the Panov's theorem of the multidimensional compensated and a doubling of the variables type argument. In the second approach we were inspired by a Multi Agent model proposed by Marilleau-Lang-Giraudoux, where the spatial dynamics of juveniles is decoupled from local evolution in each plot. To apply this model, we have introduced a directed graph whose nodes are the plots. In each node, the evolution of the colony is described by a transport equation with two variables, time and age, and the movements of dispersion, in space, are represented by the passages from one node to the other. We have proposed a discretization of the model, by finite volume methods, and noticed that this approach manages to reproduce the qualitative characteristics of the spatial dynamics observed in nature. We also proposed to consider a predator-prey system consisting of a hyperbolic equation for predators and a parabolic-hyperbolic equation for preys, where the prey's equation is analogous to the first model of the vole populations. The drift term in the predators' equation depends nonlocally on the density of prey and the two equations are also coupled via classical source terms of Lotka-Volterra type. We establish existence of solutions by applying the vanishing viscosity method, and we prove stability by a doubling of variables type argument. Moreover, concerning the numerical simulation of the first model in one-dimensional space, we obtain a finite volume discretization by using the upwind scheme and then validate the numerical scheme.The last part of my thesis work is a project in which I participated during a Summer school CEMRACS. The project was on a subject of biomathematics different from that of the thesis (an epidemiological model for salmonellosis). A new generic multi-scale modeling framework for heterogeneous transmission of pathogens in an animal population is suggested. At the intra-host level, the model describes the interaction between the commensal microbiota, the pathogen and the inflammatory response. Random fluctuations in the ecological dynamics of the individual microbiota and transmission at the inter-host scale are added to obtain a PDE model of drift-diffusion of pathogen distribution at the population level. The model is also extended to represent transmission between several populations. Asymptotic behavior as well as the impact of control strategies, including cleaning and administration of antimicrobials, are studied by numerical simulation
APA, Harvard, Vancouver, ISO, and other styles
25

Arnoldi, Jean-François. "Résonances de Ruelle à la limite semiclassique." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM105/document.

Full text
Abstract:
Depuis Ruelle, puis Rugh, Baladi, Tsujii, Liverani et d'autres, on sait que la fuite vers l'équilibre statistique dans de nombreux systèmes dynamiques chaotiques est gouvernée par le spectre de résonances de Ruelle de l'opérateur de transfert. A la suite de récents travaux de Faure, Sjöstrand et Roy, cette thèse propose une approche semiclassique de systèmes dynamiques chaotiques de type partiellement expansifs. Une partie du mémoire est consacrée aux extensions d'applications expansives vers des groupes de Lie compacts, en se reistreignant essentiellement aux extensions vers le groupe spécial unitaire SU(2). On se sert de la théorie des états cohérents pour les groupes de Lie, développée dans les années 70 par Perelomov et Gilmore, pour mettre en oeuvre les outils semiclassiques et la théorie des résonances de Helfer et Sjöstrand. On en déduira une estimation de Weyl et un gap spectral pour les résonances de Ruelle prouvant que la fuite vers l'équilibre statistique dans ces modèles est gouvernée par un opérateur de rang fini (en accord avec les résultats obtenus par Tsujii pour les semi-flots partiellement expansifs). On étend ensuite cette approche aux modèles "ouverts" pour lesquels la dynamique présente un ensemble captif de Cantor. On montrera l'existence d'un spectre discret de résonances de Ruelle et on prouve une loi de Weyl fractale, analogue classique du théorème de Lin-Guillopé-Zworski pour les résonances du laplacien hyperbolique sur les surfaces à courbure négative constante. On montre aussi un gap spectral asymptotique. On expliquera pourquoi ces modèles semblent être des objets d'étude adaptés pour approcher des questions importantes et difficiles du chaos classique ou quantique. On pense en particulier au problème de la minoration du nombre de résonances, étudié dans le contexte des applications quantiques par Nonnenmacher et Zworski
Since the work of Ruelle, then Rugh, Baladi, Tsujii, Liverani and others, it is kown that the convergence towards statistical equilibrium in many chaotic dynamical systems is gouverned by the Ruelle spectrum of resonances of the so-called transfer operator. Following recent works from Faure, Sjöstrand and Roy, this thesis gives a semiclassical approach for partially expanding chaotic dynamical systems. The first part of the thesis is devoted to compact Lie groups extenstions of expanding maps, essentially restricting to SU(2) extensions. Using Perlomov's coherent state theory for Lie groups, we apply the semiclassical theory of resonances of Helfer and Sjöstrand. We deduce Weyl type estimations and a spectral gap for the Ruelle resonances, showing that the convergence towards equilibrium is controled by a finite rank operator (as Tsujii already showed for partially expanding semi-flows). We then extend this approach to "open" models, for which the dynamics exhibits a fractal invariant reppeler. We show the existence of a discrete spectrum of resonances and we prove a fractal Weyl law, the classical analogue of Lin-Guillopé-Zworski's theorem on resonances of non-compact hyperbolic surfaces. We also show an asymptotic spectral gap. Finally we breifly explain why these models are interseting "toy models" to explore important questions of classical and quantum chaos. In particular, we have in mind the problem of proving lower bounds on the number of resonances, studied in the context of open quantum maps by Nonnenmacher and Zworski
APA, Harvard, Vancouver, ISO, and other styles
26

Guillet, Christophe. "INSTABILITE DE SYSTEMES HAMILTONIENS AU SENS DE CHIRIKOV ET BIFURCATION DANS UN PROBLEME D' EVOLUTION NON LINEAIRE ISSU DE LA PHYSIQUE." Phd thesis, Université de Franche-Comté, 2004. http://tel.archives-ouvertes.fr/tel-00011975.

Full text
Abstract:
Nous mettons en évidence une condition géométrico-dynamique minimale créant de l'hyperbolicité au voisinage d'un tore homocline transverse partiellement hyperbolique dans un système Hamiltonien presque intégrable à trois degrés de liberté. On en déduit une généralisation du théorème de dynamique symbolique d'Easton. Nous donnons ensuite une estimation optimale du temps de diffusion d'Arnold le long d'une chaîne de transition dans les systèmes Hamiltoniens initialement hyperboliques à trois degrés de liberté en utilisant une chaîne d'orbites périodiques hyperboliques sous-jacente.
Nous décrivons ensuite géométriquement à partir d'un système Hamiltonien presque intégrable à trois degrés de liberté à deux paramètres dû à Chirikov, un mécanisme de diffusion mettant en jeu un réseau de plans résonnants parallèles et voisins et un plan résonnant transversal au réseau. Ainsi, nous montrons qu'en dessous d'un certain seuil atteint par le paramètre prépondérant, on peut construire une orbite de transition dérivant en action à travers ce réseau modulationnel. Un des scénarii envisagés, le mécanisme de diffusion modulationnelle, basé sur l'existence de connexions hétéroclines entre tores partiellement hyperboliques issus de deux plans résonnants distincts est valide lorsqu'une condition de chevauchement est vérifiée.
Nous étudions enfin le modèle bidimensionnel décrivant un écoulement laminaire avec convection mixte entre deux plaques planes puis dans un tube vertical. Avec des conditions aux bords réduites, nous montrons via le théorème de la variété centrale qu'il existe dans le premier cas une bifurcation de pitchfork pour une valeur critique du nombre de Rayleigh.
APA, Harvard, Vancouver, ISO, and other styles
27

Boukili, Hamza. "Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0077.

Full text
Abstract:
Dans ce travail, on étudie la modélisation d'écoulement à trois phases non miscibles. L'application visée est l'explosion vapeur, qui risque de se produire lorsqu'un constituant liquide (S) (métal liquide à haute température) rentre en contact avec un constituant relativement froid, qui est en général de l'eau présente sous forme liquide (L) et vapeur (V). Les principaux transferts ayant lieu sont de type dynamique (vitesse-pression) et thermodynamique (échanges de chaleur et de masse). Plus précisément, les transferts de chaleur apparaissent entre les phases S, L et V, tandis que le transfert de masse ne peut survenir qu'entre les phases L et V du constituant eau. Les applications de type explosion vapeur (EV) génèrent des ondes de choc se propageant au sein du milieu et allant impacter des structures. Il est essentiel de noter que les temps de simulation réels, et les échelles de temps, sont courts. Il s'agit donc de simuler un modèle d'EDP avec lois de fermeture, qui permette de traiter des écoulements fortement instationnaires à trois phases immiscibles, avec génération d'ondes de choc et forts transferts thermiques et de masse, et qui soit conforme au second principe de la thermodynamique. Une fois le modèle d'EDP fermé donné, l'attention est portée sur la méthode numérique d'approximation de ce modèle. Une stratégie à pas fractionnaires est mise en place, afin de permettre de traiter un à un les différents effets de relaxation inclus dans le modèle. Différents cas tests numériques ont été réalisés, afin de s'assurer des propriétés des schémas considérés, et valider la cohérence des résultats numériques avec le comportement physique attendu de l'écoulement simulé
This PhD work consists of modeling a three-phase flow: liquid (L), gas (V) for the same component (water) and solid (S) for a second component (high temperature metal). Such a mix is characterized by the risk of occurrence of vapour explosion, where major transfers happen: in this bi-component environment dynamic transfers are important (speed / pressure) and thermodynamic exchanges (heat and mass transfers) also are at stake. More specifically, heat transfers occur between phases S, L and V, while the mass transfer can only occur between the phases L and V. The vapour explosion type applications (EV) generate shock waves propagating within the medium and can impact the structures. Finally, it is essential to note that the actual simulation time, and different time scales are short. The mission is, therefore, to compute an EDP model with closure laws, capable of dealing with strongly unsteady three-phase non-miscible flows, with generation of shock waves and high thermal and mass transfer, and consistent with the second principle of thermodynamics. The second step is to propose a Finite Volume numerical method adapted to the approximation of this model, and in the presence of shock waves. Numerical test cases are given in order to verify the properties of the considered schemes, attention is paid to the consistency between the numerical results and the expected physical behavior of the simulated flow
APA, Harvard, Vancouver, ISO, and other styles
28

Leguil, Martin. "Cocycle dynamics and problems of ergodicity." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC159/document.

Full text
Abstract:
Le travail qui suit comporte quatre chapitres : le premier est centré autour de la propriété de mélange faible pour les échanges d'intervalles et flots de translation. On y présente des résultats obtenus avec Artur Avila qui renforcent des résultats précédents dus à Artur Avila et Giovanni Forni. Le deuxième chapitre est consacré à un travail en commun avec Zhiyuan Zhang et concerne les propriétés d'ergodicité et d'accessibilité stables pour des systèmes partiellement hyperboliques de dimension centrale au moins égale à deux. On montre que sous des hypothèses de cohérence dynamique, center bunching et pincement fort, la propriété d'accessibilité stable est dense en topologie C^r, r>1, et même prévalente au sens de Kolmogorov. Dans le troisième chapitre, on expose les résultats d'un travail réalisé en collaboration avec Julie Déserti, consacré à l'étude d'une famille à un paramètre d'automorphismes polynomiaux de C^3 ; on montre que de nouveaux phénomènes apparaissent par rapport à ce qui était connu dans le cas de la dimension deux. En particulier, on étudie les vitesses d'échappement à l'infini, en montrant qu'une transition s'opère pour une certaine valeur du paramètre. Le dernier chapitre est issu d'un travail en collaboration avec Jiangong You, Zhiyan Zhao et Qi Zhou ; on s'intéresse à des estimées asymptotiques sur la taille des trous spectraux des opérateurs de Schrödinger quasi-périodiques dans le cadre analytique. On obtient des bornes supérieures exponentielles dans le régime sous-critique, ce qui renforce un résultat précédent de Sana Ben Hadj Amor. Dans le cas particulier des opérateurs presque Mathieu, on montre également des bornes inférieures exponentielles, qui donnent des estimées quantitatives en lien avec le problème dit "des dix Martinis". Comme conséquences de nos résultats, on présente des applications à l'homogénéité du spectre de tels opérateurs ainsi qu'à la conjecture de Deift
The following work contains four chapters: the first one is centered around the weak mixing property for interval exchange transformations and translation flows. It is based on the results obtained together with Artur Avila which strengthen previous results due to Artur Avila and Giovanni Forni. The second chapter is dedicated to a joint work with Zhiyuan Zhang, in which we study the properties of stable ergodicity and accessibility for partially hyperbolic systems with center dimension at least two. We show that for dynamically coherent partially hyperbolic diffeomorphisms and under certain assumptions of center bunching and strong pinching, the property of stable accessibility is dense in C^r topology, r>1, and even prevalent in the sense of Kolmogorov. In the third chapter, we explain the results obtained together with Julie Déserti on the properties of a one-parameter family of polynomial automorphisms of C^3; we show that new behaviours can be observed in comparison with the two-dimensional case. In particular, we study the escape speed of points to infinity and show that a transition exists for a certain value of the parameter. The last chapter is based on a joint work with Jiangong You, Zhiyan Zhao and Qi Zhou; we get asymptotic estimates on the size of spectral gaps for quasi-periodic Schrödinger operators in the analytic case. We obtain exponential upper bounds in the subcritical regime, which strengthens a previous result due to Sana Ben Hadj Amor. In the particular case of almost Mathieu operators, we also show exponential lower bounds, which provides quantitative estimates in connection with the so-called "Dry ten Martinis problem". As consequences of our results, we show applications to the homogeneity of the spectrum of such operators, and to Deift's conjecture
APA, Harvard, Vancouver, ISO, and other styles
29

Picart, Delphine. "Modélisation et estimation des paramètres liés au succès reproducteur d'un ravageur de la vigne (Lobesia botrana DEN. & SCHIFF.)." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2009. http://tel.archives-ouvertes.fr/tel-00405686.

Full text
Abstract:
L'objectif de ce travail de thèse est de développer un modèle mathématique pour l'étude et la compréhension de la dynamique des populations d'un insecte ravageur, l'Eudémis de la vigne, dans son écosystème. Le modèle proposé est un système d'équations aux dérivées partielles (EDP) de type hyperbolique qui décrit les variations numériques au cours du temps de la population en fonction des stades de développement, du sexe des individus et des conditions environnementales. La ressource alimentaire, la température, l'humidité et la prédation sont les principaux facteurs environnementaux du modèle expliquant les fluctuations du nombre d'individus au cours du temps. Les différences de développement qui existent dans une cohorte d'Eudémis sont aussi modélisées pour affiner les prédictions du modèle. A partir de données expérimentales obtenues par les entomologistes de l'INRA, les paramètres du modèle sont estimés. Ce modèle ainsi ajusté nous permet alors d'étudier quelques aspects biologiques et écologiques de l'insecte comme par exemple l'impact de scénarios climatiques sur le ponte des femelles ou sur la dynamique d'attaque de la vigne par les jeunes larves. Les analyses mathématique et numérique du modèle mathématique et des problèmes d'estimation des paramètres sont développes dans cette thèse.
APA, Harvard, Vancouver, ISO, and other styles
30

Laurent, Karine. "Étude de nouveaux schémas numériques pour la simulation des écoulements à rapport de mobilités défavorable dans un contexte EOR." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC081/document.

Full text
Abstract:
En simulation dynamique des réservoirs, un des artéfacts les plus gênants pour la prédiction de production est l’effet de l’orientation du maillage. Bien que celui-ci soit « normal » pour tout schéma numérique, il se trouve amplifié par l’instabilité du modèle physique, ce qui a lieu lorsque le contraste de mobilités entre l’eau (fluide poussant, utilisé dans les procédés de récupération secondaires) et l’huile (fluide poussé, contenant les hydrocarbures) dépasse un certain seuil critique. On parle alors d’écoulements à rapport de mobilités défavorable. Connu depuis longtemps, ce problème a fait l'objet de nombreux travaux dans les années 1980 ayant abouti au schéma dit à neuf points. Actuellement implanté dans PumaFlow, logiciel développé et commercialisé par IFPEN, ce schéma fonctionne relativement bien en maillages carrés et dépend d’un paramètre scalaire dont le réglage varie selon les auteurs sur la base de considérations heuristiques. Dans cette thèse, nous proposons une nouvelle démarche méthodologique afin non seulement d’ajuster ce paramètre libre de manière optimale mais aussi de généraliser le schéma aux maillages rectangulaires. La stratégie que nous préconisons repose sur une analyse d’erreur du problème, à partir de laquelle il est possible de définir une notion d’erreur angulaire et de garantir que le comportement du schéma obtenu soit le « moins anisotrope » possible via une minimisation de son écart par rapport à un comportement idéal. Cette procédure de minimisation est ensuite appliquée à deux autres familles de schémas numériques~ : (1) un schéma multidimensionnel proposé par Kozdon, dans lequel le paramètre libre est une fonction~ ; (2) un autre schéma à neuf points faisant intervenir deux paramètres scalaires. C’est ce dernier qui réduit le mieux l’effet de l’orientation lorsque le rapport des pas de maillage s’éloigne de 1. Enfin, une extension de la méthode à des modèles physiques plus complets est envisagée
In dynamic reservoir simulation, one of the most troublesome artifacts for the prediction of production is the grid orientation effect. Although this normally arises from any numerical scheme, it happens to be amplified by the instability of the physical model, which occurs when the mobility contrast between the water (pushing fluid, used in the processes of secondary recovery) and the oil (pushed fluid, containing the hydrocarbons) exceeds a some critical threshold. We then speak of flows with adverse mobility ratio. This GOE issue has received a lot of attention from the engineers. Numerous works dating back to the 1980s have resulted in the so-called nine-point scheme. Currently implemented in the IFPEN software PumaFlow, this scheme performs relatively well in square meshes and depends on a scalar parameter whose value varies from one author to another, on the grounds of heuristic considerations. In this thesis, we propose a new methodological approach in order not only to optimally adjust this free parameter, but also to extend the scheme to rectangular meshes. The strategy that we advocate is based on an error analysis of the problem, from which it is possible to define a notion of angular error and to guarantee that the behavior of the obtained scheme is the "least anisotropic" possible through a minimization of its deviation from some ideal behavior. This minimization procedure is then applied to two other families of numerical schemes: (1) a multidimensional scheme proposed by Kozdon, in which the free parameter is a function; (2) another nine-point scheme involving two scalar parameters. The latter provides the best results regarding GOE reduction when the ratio of the mesh steps is far away from 1. Finally, an extension of the method to more sophisticated physical models is envisaged
APA, Harvard, Vancouver, ISO, and other styles
31

Guillemaud, Vincent. "Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions." Phd thesis, Université de Provence - Aix-Marseille I, 2007. http://tel.archives-ouvertes.fr/tel-00169178.

Full text
Abstract:
Dans ce mémoire, on s'intéresse à la simulation des écoulements liquide-vapeur en transition de phase. Pour décrire ces écoulements, une approche bifluide moyennée à deux pressions indépendantes est retenue. Cette description du mélange liquide-vapeur s'appuie sur le modèle à sept équations de Baer et Nunziato. On étudie les aptitudes de cette modélisation à simuler les transitions de phase apparaissant en ingénierie nucléaire.

Dans un premier temps, on élabore un cadre thermodynamique théorique pour décrire les écoulements liquide-vapeur. Dans ce cadre, on réalise la fermeture du modèle de Baer et Nunziato. De nouvelles modélisations sont proposées pour les termes d'interaction entre les phases. Ces nouvelles modélisations dotent le modèle bifluide à deux pressions d'une inégalité d'entropie. On étudie ensuite les propriétés mathématiques de ce modèle. Sa partie convective hyperbolique se présente sous une forme non-conservative. On étudie tout d'abord la définition de ses solutions faibles. Divers régimes d'écoulement sont alors mis à jour pour le mélange diphasique. Ces différents régimes d'écoulement présentent des analogies avec le comportement fluvial et torrentiel des écoulements en rivière. Les stabilités linéaire et non-linéaire de l'équilibre liquide-vapeur sont ensuite établies. Pour affiner notre description des interactions diphasiques, on étudie pour finir l'implémentation d'un modèle de turbulence, ainsi que l'implémentation d'une procédure de reconstruction pour la densité d'aire interfaciale.

On s'intéresse ensuite à la simulation de ce modèle. Suivant une approche à pas fractionnaires, une méthode numérique est élaborée dans un formalisme Volumes Finis. Pour réaliser l'approximation de la partie convective, diverses adaptations non-conservatives de solveurs de Riemann standard sont tout d'abord proposées. A l'inverse du cadre non-conservatif classique, l'ensemble de ces schémas converge vers une unique solution. Un nouveau schéma de relaxation est ensuite proposé pour approcher la dynamique des transferts interfaciaux. L'ensemble de la méthode numérique se caractérise alors par la préservation des équilibres liquide-vapeur. Dans un premier temps, cette méthode numérique est employée à la comparaison des différentes modélisations bifluides à une et deux pressions. On l'applique ensuite à la simulation des écoulements liquide-vapeur dans les circuits hydrauliques des réacteurs à eau sous pression en configuration accidentelle.
APA, Harvard, Vancouver, ISO, and other styles
32

Al, Zohbi Maryam. "Contributions to the existence, uniqueness, and contraction of the solutions to some evolutionary partial differential equations." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2646.

Full text
Abstract:
Dans cette thèse, nous nous sommes principalement intéressés à l’étude théorique et numérique de quelques équations qui décrivent la dynamique des densités des dislocations. Les dislocations sont des défauts microscopiques qui se déplacent dans les matériaux sous l’effet des contraintes extérieures. Dans un premier travail, nous démontrons un résultat d’existence globale en temps des solutions discontinues pour un système hyperbolique diagonal qui n’est pas nécessairement strictement hyperbolique, dans un espace unidimensionnel. Ainsi dans un deuxième travail, nous élargissons notre portée en démontrant un résultat similaire pour un système d’équations de type eikonal non-linéaire qui est en fait une généralisation du système hyperbolique déjà étudié. En effet, nous prouvons aussi l’existence et l’unicité d’une solution continue pour le système eikonal. Ensuite, nous nous sommes intéressés à l’analyse numérique de ce système en proposant un schéma aux différences finies, par lequel nous montrons la convergence vers le problème continu et nous consolidons nos résultats avec quelques simulations numériques. Dans une autre direction, nous nous sommes intéressés à la théorie de contraction différentielle pour les équations d’évolutions. Après avoir introduit une nouvelle distance, nous construisons une nouvelle famille des solutions contractantes positives pour l’équation d’évolution p-Laplace
In this thesis, we are mainly interested in the theoretical and numerical study of certain equations that describe the dynamics of dislocation densities. Dislocations are microscopic defects in materials, which move under the effect of an external stress. As a first work, we prove a global in time existence result of a discontinuous solution to a diagonal hyperbolic system, which is not necessarily strictly hyperbolic, in one space dimension. Then in another work, we broaden our scope by proving a similar result to a non-linear eikonal system, which is in fact a generalization of the hyperbolic system studied first. We also prove the existence and uniqueness of a continuous solution to the eikonal system. After that, we study this system numerically in a third work through proposing a finite difference scheme approximating it, of which we prove the convergence to the continuous problem, strengthening our outcomes with some numerical simulations. On a different direction, we were enthused by the theory of differential contraction to evolutionary equations. By introducing a new distance, we create a new family of contracting positive solutions to the evolutionary p-Laplacian equation
APA, Harvard, Vancouver, ISO, and other styles
33

Jaoui, Rémi. "Flots géodésiques et théorie des modèles des corps différentiels." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS147/document.

Full text
Abstract:
Le travail de cette thèse a pour objet les interactions entre deux approches d'étude des équations différentielles: la théorie des modèles des corps différentiellement clos d'une part et l'étude dynamique des équations différentielles réelles d'autre part. Dans le premier chapitre, on présente un formalisme d'algèbre différentielle, en termes de D-schémas à la Buium au-dessus du corps des nombres réels (muni de la dérivation triviale), qui permet de rendre compte de ces deux approches d'étude en même temps. Le résultat principal est un critère d'orthogonalité aux constantes pour le type générique d'une D-variétés réelle absolument irréductible, basé sur la dynamique topologique de son flot réel analytique associé. Le deuxième chapitre est consacré aux équations différentielles algébriques décrivant le flot géodésique de variétés algébriques réelles munies de 2-formes symétriques non-dégénérées. A l'aide du critère précédent, on démontre un théorème d'orthogonalité aux constantes "en courbure strictement négative'', s'appuyant sur les résultats d'Anosov et de ses successeurs concernant la dynamique topologique - la propriété de mélange topologique faible - du flot géodésique d'une variété riemannienne compacte à courbure strictement négative. En dimension 2, on conjecture en fait une description plus précise - son type générique est minimal de prégéométrie triviale - de la structure associée aux équations différentielles géodésiques unitaires. On présente, dans le troisième chapitre, des motivations et des résultats partiels concernant cette conjecture
This thesis is dedicated to studying the interactions between two different approaches regarding differential equations: the model-theory of differentially closed fields on the one side and the dynamical analysis of real differential equations, on the other side. In the first chapter, we present a formalism from differential algebra, in terms of D-varieties à la Buium over the field of real numbers (endowed with the trivial derivation), that allows one to realise both approaches at the same time. The main result is a criterion of orthogonality to the constants, based on the topological dynamic of its associated real analytic flow. The second chapter is dedicated to the algebraic differential equations describing the (unitary) geodesic flow of a real algebraic variety endowed with an algebraic, non-degenerated symmetric 2-form. Using the previous criterion, we prove a theorem of orthogonality to the constants "in negative curvature'', that relies on the results of Anosov and of his followers, regarding the topological dynamic - the weakly mixing topological property - for the geodesic flow of a compact Riemannian manifold with negative curvature. In dimension 2, we conjecture a more precise description - its generic type is minimal and has a trivial pregeometry- for the structure associated to the unitary geodesic equation. In the third chapter, we present some motivations and partial results on this conjecture
APA, Harvard, Vancouver, ISO, and other styles
34

Chiapolino, Alexandre. "Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0757/document.

Full text
Abstract:
Ce manuscrit porte sur la modélisation et la simulation numérique d’écoulements diphasiques compressibles. Dans ce contexte, les méthodes d’interfaces diffuses sont aujourd’hui bien acceptées. Cependant, un progrès est encore attendu en ce qui concerne la précision de la capture numérique de ces interfaces. Une nouvelle méthode est développée et permet de réduire significativement cette zone de capture. Cette méthode se place dans le contexte des méthodes numériques de type “MUSCL”, très employées dans les codes de production, et sur maillages non-structurés. Ces interfaces pouvant être le lieu où une transition de phase s’opère, celle-ci est considérée au travers d’un processus de relaxation des énergies libres de Gibbs. Un nouveau solveur de relaxation à thermodynamique rapide est développé et s’avère précis, rapide et robuste y compris lors du passage vers les limites monophasiques. En outre, par rapport aux applications industrielles envisagées, une extension de la thermodynamique des phases et du mélange est nécessaire. Une nouvelle équation d’état est développée en conséquence. La formulation est convexe et est basée sur l’équation d’état “Noble-Abel-Stiffened-Gas”. Enfin, sur un autre plan la dispersion de fluides non-miscibles sous l’effet de la gravité est également abordée. Cette problématique fait apparaître de larges échelles de temps et d’espace et motive le développement d’un nouveau modèle multi-fluide de type “shallow water bi-couche”. Sa résolution numérique est également traitée
This manuscript addresses the theoretical modeling and numerical simulation of compressible two-phase flows. In this context, diffuse interface methods are now well-accepted but progress is still needed at the level of numerical accuracy regarding their capture. A new method is developed in this research work, that allows significant sharpening. This method can be placed in the framework of MUSCL-type schemes, widely used in production codes and on unstructured grids. Phase transition is addressed as well through a relaxation process relying on Gibbs free energies. A new instantaneous relaxation solver is developed and happens to be accurate, fast and robust. Moreover, in view of the intended industrial applications, an extension of the thermodynamics of the phases and of the mixture is necessary. A new equation of state is consequently developed. The formulation is convex and based on the “Noble-Abel-Stiffened-Gas” equation of state. In another context, the dispersion of non-miscible fluids under gravity effects is considered as well. This problematic involves large time and space scales and has motivated the development of a new multi-fluid model for “two-layer shallow water” flows. Its numerical resolution is treated as well
APA, Harvard, Vancouver, ISO, and other styles
35

Dehornoy, Pierre. "Invariants topologiques des orbites périodiques d'un champ de vecteurs." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00656900.

Full text
Abstract:
Cette thèse se situe à l'interface entre théorie des nœuds et théorie des systèmes dynamiques. Le thème central consiste, étant donné un champ de vecteurs dans une variété de dimension 3, à considérer ses orbites périodiques, et à s'interroger sur les informations qu'elles donnent sur le champ de vecteurs et la variété initiaux.La première partie est consacrée au flot géodésique défini sur le fibré unitaire tangentd'une surface, ou d'une orbiface, à courbure constante. L'observation de certains exemples (sphère, tore, surface modulaire) suggère la conjecture suivante, due à Étienne Ghys : l'enlacement entre deux familles homologiquement nulles quelconques d'orbites périodiques est toujours négatif. En d'autres termes, le flot géodésique serait lévogyre. Quand la courbure est négative, par les travaux de David Fried sur les flots d'Anosov, cette conjecture implique une propriété étonnante et très particulière : n'importe quelle collection homologiquement nulle d'orbites périodiques borde une section de Birkhoff pour le flot géodésique, et est par conséquent la reliure d'un livre ouvert. En ce sens, cette conjecture propose une généralisation de la construction de Norbert A'Campo de livres ouverts sur les fibrés unitaires tangents. Nous proposons la démonstration de cette conjecture dans les cas du tore, des orbifolds de type (2, q, infini), et de l'orbifold de type (2, 3, 7). La seconde partie est consacrée au comportement asymptotique des invariants des nœuds formés par les orbites périodiques d'un champ de vecteur, quand la longueur de l'orbite tend vers l'infini. Le but est de définir des invariants de champs de vecteurs stables par difféomorphisme. Dans le cas particulier des nœuds de Lorenz, nous montrons que les racines du polynôme d'Alexander admettent un comportement particulier : elles s'accumulent au voisinage du cercle-unité.
APA, Harvard, Vancouver, ISO, and other styles
36

Ramsamy, Priscilla. "Modélisation de la morphodynamique sédimentaire par une méthode distribuant le résidu." Thesis, Antilles, 2017. http://www.theses.fr/2017ANTI0206/document.

Full text
Abstract:
Ce travail de thèse, propose un schéma numérique d'ordre élevé, distribuantle résidu (RD) pour l'approximation d'un problème hydro-sédimentairehyperbolique non conservatif, couplant les modèles de Grass et de Saint-Venant. Il fait appel à des méthodes de Runge-Kutta à variation totale diminuanteet de stabilisation (méthode de décentrement amont, dit Upwind),avec ou sans adjonction de limiteurs et présente de bonnes propriétés.L'une des facettes importantes de ce qui a été réalisée, repose sur la conceptionet le développement d'un programme Python 2D-espace, sous la formed'un logiciel faisant appel à un ensemble de modules créés pour l'occasion.Le développement du code de calcul, qui se propose d'approcher la solutiondu problème hydro-sédimentaire, a été e_ectué avec une orientation Objetet pour être e_cace sur calculateur parallèle (utilisant le parallélisme multithreadsOpenMP). L'une des particularités du schéma numérique dans cecadre, est liée à son application à des quadrangles.Un programme 1D-espace, qui se présente également sous forme de logiciel,a aussi été mis en place. Pour des raisons de portabilité et d'e_catité, il aété écrit multilangages (Python-Fortran : via numpy.ctypes pour Python etvia l'interface standard de Fortran pour C). Le schéma RD avec ou sansadjonction de limiteurs de _ux, a été implémenté à la manière d'un schémaprédicteur-correcteur. Des comparaisons avec d'autres schémas ont été e_ectuées a_n de montrer son e_cacité, son ordre de précision élevé a été mis enévidence, et la C-propriété a été testée. Les tests ont révélé que, pour le casd'un transport d'un pro_l sédimentaire parabolique, c'est le limiteur de _uxMUSCL MinMod, qui est le plus adapté parmi ceux testés.Dans le cas scalaire, des tests numériques ont été réalisés a_n de validerle second ordre de précision
The present work, proposes a high order Residual Distribution (RD) numericalscheme to solve the non conservative hyperbolic problem, coupling Shallow Water and Grass equations. It uses Total Value Diminishing Runge Kutta and stabilisation Upwind methods, with or without limiters. It also has some good properties.A part of the work realised in this thesis, is about the conception and the developpement of a 2D-space Python program, under the form of a software,using a set of moduls created for the occasion. the code developpement, whichis said to approach the _uid-sediment model, coupling Shallow-Water and sedimentequations, has been made with an Object orientation and in orderto be e_cient on parallel architecture (using multithreads OpenMP parallelism). One of the features of the scheme in this case, is due to its application on quadrangles.A 1D-space program, also writen as a software, has been estabished. In order to be portable and e_cient, It has been developped multilinguals (Python- Fortran : by numpy.ctypes for Python and by standart interface FORTRAN for C). The RD scheme with or without Flux Limiters, has been implemented like predictor-corrector one. Comparisons with other schemes results have been realised, in order to show its e_ciency, moreover its high order accuracy has been focus on, and the C-proprerty has been tested. The tests show that MUSCL MinMod _ux limiters, is the most adaptated for a dune test case, between all tested.In the scalar case, numerical tests have been realised, for validating the secondorder of accuracy
APA, Harvard, Vancouver, ISO, and other styles
37

Weynans, Lisl. "Methode particulaire multiniveaux pour la dynamique des gaz, application au calcul d'ecoulements multifluides." Phd thesis, 2006. http://tel.archives-ouvertes.fr/tel-00121346.

Full text
Abstract:
L'objectif de cette these est d'evaluer la capacite d'une methode particulaire inspiree des methodes Vortex-In-Cell a simuler les ecoulements de la dynamique des gaz, et plus particulierement les ecoulements multifluides. Dans un premier temps nous developpons une methode particules-grille avec remaillage pour les ecoulements compressibles non-visqueux. Le remaillage, conservatif, est realise avec des fonctions d'interpolation d'ordre eleve. Nous analysons theoriquement et testons numeriquement cette methode. Nous mettons notamment en evidence des liens forts entre notre methode et des schemas aux differences finies d'ordre eleve, de type Lax-Wendroff, et nous proposons un nouveau schema d'advection des particules, simple et plus precis. Puis nous implantons une technique multi-niveaux inspiree de l'AMR. Enfin, nous discretisons une technique de type level-set sur les particules afin de simuler l'interface entre fluides. Nous utilisons la technique multi-niveaux pour resoudre plus precisement l'interface et d'ameliorer la conservation des masses partielles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography