Dissertations / Theses on the topic 'System identification and control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'System identification and control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Szabo, Andrew P. "System Identification and Model-Based Control of Quadcopter UAVs." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1553197265058507.
Full textLi, Liangmin. "Continuous time nonlinear system identification." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341867.
Full textBrunke, Shelby Scott. "Nonlinear filtering and system identification algorithms for autonomous systems /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/7095.
Full textHaider, Usama. "Smart Maintenance using System Identification." Thesis, Högskolan i Gävle, Avdelningen för elektroteknik, matematik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30735.
Full textSalam, Md Abdul, and Md Mafizul Islam. "Modelling and Control System Design to control Water temperature in Heat Pump." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-30680.
Full textKristinsson, Kristinn. "Genetic algorithms in system identification and control." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29628.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Tayamon, Soma. "Nonlinear system identification with applications to selective catalytic reduction systems." Licentiate thesis, Uppsala universitet, Avdelningen för systemteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-186963.
Full textLiu, Xing. "System identification and prediction using neural networks." Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388229.
Full textLee, James X. "On fuzzy logic systems, nonlinear system identification, and adaptive control." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq26881.pdf.
Full textLee, James X. (James Xiang) Carleton University Dissertation Engineering Mechanical and Aerospace. "On fuzzy logic systems, nonlinear system identification, and adaptive control." Ottawa, 1997.
Find full textWang, Limin. "Modeling and real-time feedback control of MEMS device." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3711.
Full textTitle from document title page. Document formatted into pages; contains v, 132 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 128-132).
Sharma, Aman. "System Identification of a Micro Aerial Vehicle." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73070.
Full textMyklebust, Andreas. "Closed Loop System Identification of a Torsion System." Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17531.
Full textA model is developed for the Quanser torsion system available at Control Systems Research Laboratory at Chulalongkorn University. The torsion system is a laboratory equipment that is designed for the study of position control. It consists of a DC motor that drives three inertial loads that are coupled in series with the motor, and where all components are coupled to each other through torsional springs.
Several nonlinearities are observed and the most significant one is an offset in the input signal, which is compensated for. Experiments are carried out under feedback as the system is marginally stable. Different input signals are tested and used for system identification. Linear black-box state-space models are then identified using PEM, N4SID and a subspace method made for closed-loop identification, where the last two are the most successful ones. PEM is used in a second step and successfully enhances the parameter estimates from the other algorithms.
Markusson, Ola. "Model and System Inversion with Applications in Nonlinear System Identification and Control." Doctoral thesis, KTH, Signals, Sensors and Systems, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3287.
Full textAnderson, Jeremiah P. "State-space modeling, system identification and control of a 4th order rotational mechanical system." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FAnderson.pdf.
Full textThesis Advisor(s): Yun, Xiaoping. Second Reader: Julian, Alex. "December 2009." Description based on title screen as viewed on January 26, 2010. Author(s) subject terms: System identification, state-space, pole placement, full state feedback, observer. Includes bibliographical references (p. 91). Also available in print.
Tayamon, Soma. "Nonlinear System Identification and Control Applied to Selective Catalytic Reduction Systems." Doctoral thesis, Uppsala universitet, Avdelningen för systemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229148.
Full textMårtensson, Jonas. "Geometric analysis of stochastic model errors in system identification." Doctoral thesis, KTH, Reglerteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4506.
Full textQC 20100810
Liu, Zhang. "Structured semidefinite programs in system identification and control." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=2026920931&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textBarenthin, Märta. "On input design in system identification for control." Licentiate thesis, KTH, School of Electrical Engineering (EES), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4000.
Full textThere are many aspects to consider when designing system identification experiments in control applications. Input design is one important issue. This thesis considers input design both for identification of linear time-invariant models and for stability validation.
Models obtained from system identification experiments are uncertain due to noise present in measurements. The input spectrum can be used to shape the model quality. A key tool in input design is to introduce a linear parametrization of the spectrum. With this parametrization a number of optimal input design problems can be formulated as convex optimization programs. An Achilles' heel in input design is that the solution depends on the system itself, and this problem can be handled by iterative procedures where the input design is based on a model of the system. Benefits of optimal input design are quantified for typical industrial applications. The result shows that the experiment time can be substantially shortened and that the input power can be reduced.
Another contribution of the thesis is a procedure where input design is connected to robust control. For a certain system structure with uncertain parameters, it is shown that the existence of a feedback controller that guarantees a given performance specification can be formulated as a convex optimization program. Furthermore, a method for input design for multivariable systems is proposed. The constraint on the model quality is transformed to a linear matrix inequality using a separation of graphs theorem. The result indicates that in order to obtain a model suitable for control design, it is important to increase the power of the input in the low-gain direction of the system relative to the power in the high-gain direction.
A critical issue when validating closed-loop stability is to obtain an accurate estimate of the maximum gain of the system. This problem boils down to finding the input signal that maximizes the gain. Procedures for gain estimation of nonlinear systems are proposed and compared. One approach uses a model of the system to design the optimal input. In other approaches, no model is required, and the system itself determines the optimal input sequence in repeated experiments.
Barenthin, Märta. "On input design in system identification for control /." Stockholm : Automatic control, School of Electrical Engineering, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4000.
Full textDeVilbiss, Stewart L. "System Identification for H(Infinity) Robust Control Design /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487859313345322.
Full textLan, Jing. "Gaussian mixture model based system identification and control." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014640.
Full textZhou, Xiangrong, and 周向榮. "An integrated approach to identification and control system design." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31241414.
Full textChoi, Eric M. "The modeling and system identification of the Dynamics Identification and Control Experiment." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29363.pdf.
Full textLyzell, Christian. "Initialization Methods for System Identification." Licentiate thesis, Linköping University, Linköping University, Automatic Control, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-51688.
Full textIn the system identification community a popular framework for the problem of estimating a parametrized model structure given a sequence of input and output pairs is given by the prediction-error method. This method tries to find the parameters which maximize the prediction capability of the corresponding model via the minimization of some chosen cost function that depends on the prediction error. This optimization problem is often quite complex with several local minima and is commonly solved using a local search algorithm. Thus, it is important to find a good initial estimate for the local search algorithm. This is the main topic of this thesis.
The first problem considered is the regressor selection problem for estimating the order of dynamical systems. The general problem formulation is difficult to solve and the worst case complexity equals the complexity of the exhaustive search of all possible combinations of regressors. To circumvent this complexity, we propose a relaxation of the general formulation as an extension of the nonnegative garrote regularization method. The proposed method provides means to order the regressors via their time lag and a novel algorithmic approach for the \textsc{arx} and \textsc{lpv-arx} case is given.
Thereafter, the initialization of linear time-invariant polynomial models is considered. Usually, this problem is solved via some multi-step instrumental variables method. For the estimation of state-space models, which are closely related to the polynomial models via canonical forms, the state of the art estimation method is given by the subspace identification method. It turns out that this method can be easily extended to handle the estimation of polynomial models. The modifications are minor and only involve some intermediate calculations where already available tools can be used. Furthermore, with the proposed method other a priori information about the structure can be readily handled, including a certain class of linear gray-box structures. The proposed extension is not restricted to the discrete-time case and can be used to estimate continuous-time models.
The final topic in this thesis is the initialization of discrete-time systems containing polynomial nonlinearities. In the continuous-time case, the tools of differential algebra, especially Ritt's algorithm, have been used to prove that such a model structure is globally identifiable if and only if it can be written as a linear regression model. In particular, this implies that once Ritt's algorithm has been used to rewrite the nonlinear model structure into a linear regression model, the parameter estimation problem becomes trivial. Motivated by the above and the fact that most system identification problems involve sampled data, a version of Ritt's algorithm for the discrete-time case is provided. This algorithm is closely related to the continuous-time version and enables the handling of noise signals without differentiations.
Guidi, Hernan. "Open and closed-loop model identification and validation." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-07032009-170311/.
Full textChowdhary, Mahesh. "On-line system identification for control system applications in particle accelerators." W&M ScholarWorks, 1997. https://scholarworks.wm.edu/etd/1539623898.
Full textBrus, Linda. "Nonlinear Identification and Control with Solar Energy Applications." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8594.
Full textKhader, Shahbaz Abdul. "System Identification of Active Magnetic Bearing for Commissioning." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243630.
Full textHariri, Bassam. "Modelling and identification of S.I. engines for control system design." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266264.
Full textEklund, John M. "Aircraft flight control simulation using parallel cascade system identification." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0004/MQ28194.pdf.
Full textSpindler, Henry C. (Henry Carlton) 1970. "System identification and optimal control for mixed-mode cooling." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30334.
Full text"September 2004."
Includes bibliographical references (p. 285-294).
The majority of commercial buildings today are designed to be mechanically cooled. To make the task of air conditioning buildings simpler, and in some cases more energy efficient, windows are sealed shut, eliminating occupants' direct access to fresh air. Implementation of an alternative cooling strategy-mixed-mode cooling-is demonstrated in this thesis to yield substantial savings in cooling energy consumption in many U.S. locations. A mixed-mode cooling strategy is one that relies on several different means of delivering cooling to the occupied space. These different means, or modes, of cooling could include: different forms of natural ventilation through operable windows, ventilation assisted by low-power fans, and mechanical air conditioning. Three significant contributions are presented in this thesis. A flexible system identification framework was developed that is well-suited to accommodate the unique features of mixed-mode buildings. Further, the effectiveness of this framework was demonstrated on an actual multi- zone, mixed-mode building, with model prediction accuracy shown to exceed that published for other naturally ventilated or mixed-mode buildings, none of which exhibited the complexity of this building. Finally, an efficient algorithm was constructed to optimize control strategies over extended planning horizons using a model-based approach. The algorithm minimizes energy consumption subject to the constraint that indoor temperatures satisfy comfort requirements. The system identification framework was applied to another mixed-mode building, where it was found that the aspects integral to the modeling framework led to prediction improvements relative to a simple model.
(cont.) Lack of data regarding building apertures precluded the use of the model for control purposes. An additional contribution was the development of a procedure for extracting building time constants from experimental data in such a way that they are constrained to be physically meaningful.
by Henry C. Spindler.
Ph.D.
Lopes, Rafael Anderson Martins. "Aircraft identification applied to closed loop control system design." Instituto Tecnológico de Aeronáutica, 2006. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=904.
Full textGonzález, Rodrigo A. "Consistency and efficiency in continuous-time system identification." Licentiate thesis, KTH, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273176.
Full textQC 20200511
Juillet, Fabien. "Control of convection-dominated flows." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/01/00/94/63/PDF/PhD_Juillet_Fabien.pdf.
Full textIn this thesis, a flow control procedure is developed numerically and is then implemented experimentally. The purpose of this procedure is to reduce the amplitude of perturbations in convection dominated flows. To design such a technique three aspects are analyzed in a first part. Since information in convection-dominated flows essentially travel downstream, incoming perturbations are better described by placing sensors upstream. This intuitive idea is studied quantitatively by introducing the concept of visibility length. In addition, a description of the flow dynamics is obtained using system identification techniques. These tools have the advantage of providing models based solely on experimentally accessible data and are therefore directly applicable to real flows. Finally, a feed-forward control approach is found to be most appropriate and a comparison with the classical linear quadratic gaussian technique is presented from numerical and theoretical point of views. In a second part, these three aspects are then taken into account in the design of a feed-forward identification and control procedure, which is then simplified to be more amenable to practical implementations in experiments. In particular, the system impulse responses are first identified, and are then directly used for the computation of the control law. Hence, the technique only relies on simple least-squares minimizations and has the advantage of manipulating quantities that have clear physical meanings, such as perturbation convective speeds and characteristic frequencies. Thus, in a last part, the control procedure is applied experimentally to the quenching of natural disturbances in a plane channel flow at Re = 870. Results show that the magnitude of the signal recorded by the objective sensor can be reduced by up to 45%
Kramer, Boris Martin Josef. "Model and Data Reduction for Control, Identification and Compressed Sensing." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/75179.
Full textPh. D.
Silva, Seth F. "Applied System Identification for a Four Wheel Reaction Wheel Platform." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/328.
Full textMerkoulova, Daniel. "Optimal Input Design by Model Predictive Control for System Identification." Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215712.
Full textMatematiska modeller är essentiella när det kommer till autonoma systemeftersom det förenklar formuleringar av styrlagar och tillåter tester i simuleringsmiljöer.För komplexa system kan delar av modellen saknas vilket ökarosäkerheten hos modellen och begränsar praktiska tillämpningar. Genom attanvända in-ut data är det möjligt att estimera modellen men det kräver attmätningarna är av relativ kvalitet. Idén är således att finna en sekvens av indataså att dynamiken hos systemet avslöjas vilket kan formuleras som ettoptimeringsproblem.Det här arbetet fokuserar på att formulera ett optimeringsproblem somska implementeras i modell prediktiv reglering. Problemet består utav klassiskA,D, E-optimalitet med begränsade diskreta bivillkor på insignalen. Metodenevalueras i simulering på ett godtyckligt andra ordningens system och på ettlineariserat första ordningens vattentankssystem.
Brunell, Brent Jerome 1972. "A system identification approach to active control of thermoacoustic instabilities." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/88832.
Full textRathnasingham, Ruben. "System identification and active control of a turbulent boundary layer." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10468.
Full textPietersen, Willem Hermanus. "System identification for fault tolerant control of unmanned aerial vehicles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4164.
Full textENGLISH ABSTRACT: In this project, system identification is done on the Modular Unmanned Aerial Vehicle (UAV). This is necessary to perform fault detection and isolation, which is part of the Fault Tolerant Control research project at Stellenbosch University. The equations necessary to do system identification are developed. Various methods for system identification is discussed and the regression methods are implemented. It is shown how to accommodate a sudden change in aircraft parameters due to a fault. Smoothed numerical differentiation is performed in order to acquire data necessary to implement the regression methods. Practical issues regarding system identification are discussed and methods for addressing these issues are introduced. These issues include data collinearity and identification in a closed loop. The regression methods are implemented on a simple roll model of the Modular UAV in order to highlight the various difficulties with system identification. Different methods for accommodating a fault are illustrated. System identification is also done on a full nonlinear model of the Modular UAV. All the parameters converges quickly to accurate values, with the exception of Cl R , CnP and Cn A . The reason for this is discussed. The importance of these parameters in order to do Fault Tolerant Control is also discussed. An S-function that implements the recursive least squares algorithm for parameter estimation is developed. This block accommodates for the methods of applying the forgetting factor and covariance resetting. This block can be used as a stepping stone for future work in system identification and fault detection and isolation.
AFRIKAANSE OPSOMMING: In hierdie projek word stelsel identifikasie gedoen op die Modulêre Onbemande Vliegtuig. Dit is nodig om foutopsporing en isolasie te doen wat ’n deel uitmaak van fout verdraagsame beheer. Die vergelykings wat nodig is om stelsel identifikasie te doen is ontwikkel. Verskeie metodes om stelsel identifikasie te doen word bespreek en die regressie metodes is uitgevoer. Daar word gewys hoe om voorsiening te maak vir ’n skielike verandering in die vliegtuig parameters as gevolg van ’n fout. Reëlmatige numeriese differensiasie is gedoen om data te verkry wat nodig is vir die uitvoering van die regressie metodes. Praktiese kwessies aangaande stelsel identifikasie word bespreek en metodes om hierdie kwessies aan te spreek word gegee. Hierdie kwessies sluit interafhanklikheid van data en identifikasie in ’n geslote lus in. Die regressie metodes word toegepas op ’n eenvoudige rol model van die Modulêre Onbemande Vliegtuig om die verskeie kwessies aangaande stelsel identifikasie uit te wys. Verskeie metodes vir die hantering vir ’n fout word ook illustreer. Stelsel identifikasie word ook op die volle nie-lineêre model van die Modulêre Onbemande Vliegtuig gedoen. Al die parameters konvergeer vinnig na akkurate waardes, met die uitsondering van Cl R , CnP and Cn A . Die belangrikheid van hierdie parameters vir fout verdraagsame beheer word ook bespreek. ’n S-funksie blok vir die rekursiewe kleinste-kwadraat algoritme is ontwikkel. Hierdie blok voorsien vir die metodes om die vergeetfaktor en kovariansie herstelling te implementeer. Hierdie blok kan gebruik word vir toekomstige werk in stelsel identifikasie en foutopsporing en isolasie.
Demarchi, Fabio Luciano. "Modeling and identification of a fly-by-wire control system." Instituto Tecnológico de Aeronáutica, 2005. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=185.
Full textChoi, Ju-Yeop. "Nonlinear system identification and control using a neural network approach." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/40199.
Full textChang, Gary Carleton University Dissertation Engineering Systems and Computer. "System identification and control of a thermo-mechanical pulping refiner." Ottawa, 1995.
Find full textChamberlain, Caleb H. "System Identification, State Estimation, and Control of Unmanned Aerial Robots." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2605.
Full textLei, Yu. "Functional Regression and Adaptive Control." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/29113.
Full textPh. D.
Wang, Dawei. "Robust system identification and robust model predictive control with applications to chemical engineering processes." Thesis, The University of Sydney, 2001. https://hdl.handle.net/2123/27788.
Full textAlukaidey, R. A. S. "Multivariable identification and adaptive control." Thesis, Brunel University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384517.
Full textMalmström, Magnus. "Uncertainties in Neural Networks : A System Identification Approach." Licentiate thesis, Linköpings universitet, Reglerteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174720.
Full textInom forskning och utveckling har det har alltid varit centralt att skapa modeller av verkligheten. Dessa modeller har bland annat använts till att förutspå framtida händelser eller för att styra ett system till att bete sig som man önskar. Modellerna kan beskriva allt från hur friktionen hos ett bildäck påverkas av hur mycket hjulen glider till hur ett virus kan sprida sig i ett samhälle. I takt med att mer och mer data blir tillgänglig ökar potentialen för datadrivna black-box modeller. Dessa modeller är universella approximationer vilka ska kunna representera vilken godtycklig funktion som helst. Användningen av dessa modeller har haft stor framgång inom många områden men för att verkligen kunna etablera sig inom säkerhetskritiska områden såsom självkörande farkoster behövs en förståelse för osäkerhet i prediktionen från modellen. Neuronnät är ett exempel på en sådan black-box modell. I denna avhandling kommer olika sätt att tillförskaffa sig kunskap om osäkerhet i prediktionen av neuronnät undersökas. En metod som bygger på linjärisering av modellen för att tillförskaffa sig osäkerhet i prediktionen av neuronnätet kommer att presenteras. Denna metod är välbeprövad inom systemidentifiering och sensorfusion under antagandet att modellen är identifierbar. För modeller såsom neuronnät, vilka inte är identifierbara behövs det att det tas hänsyn till tvetydigheterna i modellen. En annan utmaning med datadrivna black-box modeller, är att veta om den valda modellmängden är tillräckligt generell för att kunna modellera det sanna systemet. En lösning på detta problem är att använda modeller som har mer flexibilitet än vad som behövs, det vill säga en överparameteriserad modell. Men hur påverkas osäkerheten i prediktionen av detta? Detta är något som undersöks i denna avhandling, vilken visar att osäkerheten i den överparameteriserad modellen kommer att vara begränsad underifrån av modellen med minst flexibilitet som ändå är tillräckligt generell för att modellera det sanna systemet. Som avslutning kommer dessa resultat att demonstreras i både en simuleringsstudie och en experimentstudie inspirerad av självkörande farkoster. Fokuset i simuleringsstudien är hur osäkerheten hos modellen är i områden med och utan tillgång till träningsdata medan experimentstudien fokuserar på jämförelsen mellan osäkerheten i olika typer av modeller.Resultaten från dessa studier visar att metoden som bygger på linjärisering ger liknande resultat för skattningen av osäkerheten i prediktionen av neuronnät, jämfört med existerande metoder.
iQdeep
Vu, Ky Minh. "System identification, control algorithms and control interval for the Box-Jenkins dynamic model structure." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25181.pdf.
Full text