Dissertations / Theses on the topic 'Synthetic images of curtaing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Synthetic images of curtaing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dvořák, Martin. "Anticurtaining - obrazový filtr pro elektronovou mikroskopii." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445537.
Full textGarcía, Armando. "Efficient rendering of synthetic images." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15182.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 221-224.
by Armando Garcia.
Ph.D.
Manamasa, Krishna Himaja. "Domain adaptation from 3D synthetic images to real images." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19303.
Full textHagedorn, Michael. "Classification of synthetic aperture radar images." Thesis, University of Canterbury. Electrical and Computer Engineering, 2004. http://hdl.handle.net/10092/5966.
Full textHasegawa, Robert Shigehisa. "Using synthetic images to improve iris biometric performance." Scholarly Commons, 2012. https://scholarlycommons.pacific.edu/uop_etds/827.
Full textAubrecht, Tomáš. "Generation of Synthetic Retinal Images with High Resolution." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417220.
Full textSabel, Johan. "Detecting Synthetic Images of Faces using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287447.
Full textNya arkitekturer för GAN-nätverk har möjliggjort stora framsteg inom området för syntes av bilder av människoansikten. Dessa neuronnät är kapabla att generera trovärdiga och högkvalitativa bilder av personer som inte existerar i verkligheten, vilket skulle kunna utnyttjas av illvilliga aktörer. I detta examensarbete utvärderades ett flertal djupinlärningsbaserade state-of-the-art-modeller avsedda för detektion av syntetiska bilder. Utvärderingen gjordes med hänsyn till både robusthet och generaliseringsförmåga, vilka är två avgörande faktorer för modeller som är avsedda att användas i verkliga tillämpningar. Resultaten visar att vissa klassificerare presterade nästintill perfekt vid utvärdering på äkta och syntetiska bilder som efterbehandlats kraftigt på olika sätt. Modellerna visade sig även vara ännu mer robusta när liknande bildstörningar användes under träning. Angående modellernas generaliseringsförmåga så lyckades ingen av dem uppnå tillfredsställande resultat vid utvärdering på bilder från okända källor som inte fanns tillgängliga under träning. Dock uppnådde en av de tränade modellerna imponerande resultat efter att ha tränats ytterligare på ett fåtal bilder från de tidigare okända källorna. Den begränsade generaliseringsförmågan utgör dock ett tillkortakommande såtillvida att modellerna i nuläget inte kan förväntas prestera tillfredsställande i verkliga tillämpningar.
Zeid, Baker Mousa. "Generation of Synthetic Images with Generative Adversarial Networks." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15866.
Full textHaiderbhai, Mustafa. "Generating Synthetic X-rays Using Generative Adversarial Networks." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41092.
Full textJohnson, David L. "Airborne synthetic aperture radar images of an upwelling filament." Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7036.
Full textiv, 124 leaves
Fransson, Johan. "Analysis of synthetic aperture radar images for forestry applications /." Umeå : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 1999. http://www.resgeom.slu.se/fjarr/personal/jf/.
Full textAitchison, Andrew C. "Synthetic images of faces using a generic head model." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305878.
Full textFowler, E. "Interpretation of Synthetic Aperture Radar images using fractal geometry." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385750.
Full textKola, Ramya Sree. "Generation of synthetic plant images using deep learning architecture." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18450.
Full textRichards, John A. (John Alfred). "Target model generation from multiple synthetic aperture radar images." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/33157.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 215-223).
by John A. Richards.
Ph.D.
Fletcher, Neil David. "Multi-scale texture segmentation of synthetic aperture radar images." Thesis, University of Bath, 2005. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415766.
Full textCastle, Oliver M. "Synthetic image generation for a multiple-view autostereo display." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285412.
Full textVi, Margareta. "Object Detection Using Convolutional Neural Network Trained on Synthetic Images." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153224.
Full textStenhagen, Petter. "Improving Realism in Synthetic Barcode Images using Generative Adversarial Networks." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151959.
Full textSundin, Hannes, and Jakob Josefsson. "Evaluating synthetic training data for character recognition in natural images." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280292.
Full textI det här kandidatexamensarbetet behandlas bokstavigenkänning i naturliga bilder. Mer specifikt jämförs syntetiska typsnittsbilder med naturliga bilder för träning av ett Convolutional Neural Network (CNN). Att träna ett CNN för att känna igen bokstäver i naturliga bilder kräver oftast mycket betecknad naturlig data. Ett alternativ till detta är att producera syntetisk träningsdata i form av typsnittsbilder. I denna studie skapades 41664 typsnittsbilder, vilket i kombination med existerande data gav oss omkring 99 tusen syntetiska träningsbilder. Därefter tränades ett CNN med typsnittsbilder i ökande mängd för att sedan testas på naturliga bilder av bokstäver. Resultatet av detta jämfördes sedan med resultatet av att träna med naturliga bilder. Dessutom experimenterades med olika förbehandlingsmetoder för att observera förbehandlingens påverkan på klassifikationsgraden. Resultaten visade att även med den förbehandlingsmetoden som gav bäst resultat och med mycket mer data, var träning med syntetiska bilder inte lika effektivt som med naturliga bilder. Dock så visades det att med en bra förbehandlingsmetod kan syntetiska bilder ersätta naturliga bilder, givet att tillgången till naturliga bilder är begränsat.
Marshall, Gareth John. "The effectiveness of spaceborne synthetic aperture radar for glacier monitoring." Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/268042.
Full textPiretti, Mattia. "Synthetic DNA as a novel data storage solution for digital images." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22028/.
Full textPenaloza, Cabrera Camilo. "Giant molecular clouds : a view through molecular tracers and synthetic images." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/116132/.
Full textTheisen, Erik Bjørge. "Experimental Mueller Matrix Images of Liquid Crystalline Domains in Synthetic Clay Dispersions." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14329.
Full textParker, Johne' Michelle. "A methodology for generating physically accurate synthetic images for machine vision applications." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/18384.
Full textYeang, Chen-Pang. "Target identification theory for synthetic aperture radar images using physics-based signatures." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80603.
Full textKaneva, Biliana K. "Large databases of real and synthetic images for feature evaluation and prediction." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/71478.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 157-167).
Image features are widely used in computer vision applications from stereo matching to panorama stitching to object and scene recognition. They exploit image regularities to capture structure in images both locally, using a patch around an interest point, and globally, over the entire image. Image features need to be distinctive and robust toward variations in scene content, camera viewpoint and illumination conditions. Common tasks are matching local features across images and finding semantically meaningful matches amongst a large set of images. If there is enough structure or regularity in the images, we should be able not only to find good matches but also to predict parts of the objects or the scene that were not directly captured by the camera. One of the difficulties in evaluating the performance of image features in both the prediction and matching tasks is the availability of ground truth data. In this dissertation, we take two different approaches. First, we propose using a photorealistic virtual world for evaluating local feature descriptors and leaning new feature detectors. Acquiring ground truth data and, in particular pixel to pixel correspondences between images, in complex 3D scenes under different viewpoint and illumination conditions in a controlled way is nearly impossible in a real world setting. Instead, we use a high-resolution 3D model of a city to gain complete and repeatable control of the environment. We calibrate our virtual world evaluations by comparing against feature rankings made from photographic data of the same subject matter (the Statue of Liberty). We then use our virtual world to study the effects on descriptor performance of controlled changes in viewpoint and illumination. We further employ machine learning techniques to train a model that would recognize visually rich interest points and optimize the performance of a given descriptor. In the latter part of the thesis, we take advantage of the large amounts of image data available on the Internet to explore the regularities in outdoor scenes and, more specifically, the matching and prediction tasks in street level images. Generally, people are very adept at predicting what they might encounter as they navigate through the world. They use all of their prior experience to make such predictions even when placed in unfamiliar environment. We propose a system that can predict what lies just beyond the boundaries of the image using a large photo collection of images of the same class, but not from the same location in the real world. We evaluate the performance of the system using different global or quantized densely extracted local features. We demonstrate how to build seamless transitions between the query and prediction images, thus creating a photorealistic virtual space from real world images.
by Biliana K. Kaneva.
Ph.D.
Mattila, Marianne. "Synthetic Image Generation Using GANs : Generating Class Specific Images of Bacterial Growth." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176402.
Full textJu, Chen. "Edge-enhanced segmentation for SAR images." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ34190.pdf.
Full textOliveira, Gustavo Henrique. "Analysis of M2 tidal signatures in synthetic aperture radar images of Delaware Bay." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 111 p, 2008. http://proquest.umi.com/pqdweb?did=1456288331&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textRau, Richard. "Postprocessing tools for ultra-wideband SAR images." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/13389.
Full textSingh, Jagmal [Verfasser]. "Spatial content understanding of very high resolution synthetic aperture radar images / Jagmal Singh." Siegen : Universitätsbibliothek der Universität Siegen, 2014. http://d-nb.info/1054543852/34.
Full textSeck, Bassirou. "Display and Analysis of Tomographic Reconstructions of Multiple Synthetic Aperture LADAR (SAL) images." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1547740781773769.
Full textXue, Jingshuang. "Internal Wave Signature Analyses with Synthetic Aperture Radar Images in the Mid-Atlantic Bight." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_theses/51.
Full textParker, Johne' Michelle. "An analytical and experimental investigation of physically-accurate synthetic images for machine vision design." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/19038.
Full textAtapattu, Charith Nisanka. "IMPROVING THE REALISM OF SYNTHETIC IMAGES THROUGH THE MIXTURE OF ADVERSARIAL AND PERCEPTUAL LOSSES." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2439.
Full textD'Agostino, Alessandro. "Automatic generation of synthetic datasets for digital pathology image analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21722/.
Full textHe, Wenju [Verfasser], and Olaf [Akademischer Betreuer] Hellwich. "Segmentation-Based Building Analysis from Polarimetric Synthetic Aperture Radar Images / Wenju He. Betreuer: Olaf Hellwich." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1014971683/34.
Full textBlagoiev, Aleksander. "Implementation and verification of a quantitative MRI method for creating and evaluating synthetic MR images." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-79068.
Full textSyftet med detta arbete var att implementera och kvantitativt undersöka en kvantitativ MR (qMRI) metod, för att sedan skapa och utvärdera syntetiska MR-bilder. qMRI-metodens parameterkartor (T1, T2* och effektiv proton densitets PD*) undersöktes med olika typer av referensprover. Dessa prover innehöll skilda relaxationstider, samt olika koncentrationer av vatten (H2O) och tungt vatten (D2O). In vivo parameterkartor från frivilliga granskades genom att jämföra T1, T2* och PD* värdena på intresseområden (ROIs) mellan frivilliga och publicerade värden. Syntetiska FLASH MR-bilder utvärderades genom att: använda relativa standardavvikelsen av ett intresseområde (ROI) som ett mått på signal-brusförhållande (SNR), implantera artificiell multipel skleros (MS) lesioner i de frivilligas parameterkartor för att se ifall dessa kan identifieras i de syntetiska MR-bilder, och slutligen utvärderade en MR-radiolog bilderna. MR-mätningarna utfördes på 3.0 Tesla MR-kamera (Siemens MAGNETOM Skyrafit). Resultaten från referensproverna visar att implementeringen var rimligen framgångsrik, även om beräknade T2* för voxlar som har T2 över 100 ms inte är pålitliga. Frivilligas parameterkartor visade på bra överensstämmelse, dessvärre inte med publicerade. SNR och kontrast-till-brus-förhållandet (CNR) för syntetiska bilder är jämförbara med deras uppmätta motsvarigheter, beroende på TE. De artificiella MS-lesionerna kunde tydligt skiljas från normal omgivande vävnad i en T1-viktad syntetisk FLASH. Radiologen tyckte att en syntetisk T2*-viktad FLASH var något lovande för klinisk användning efter ytterligare förbättringar, medan en syntetisk T1-viktad FLASH hade kliniskt värde.
Meyer, Rory George Vincent. "Classification of ocean vessels from low resolution satellite SAR images." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/66224.
Full textDissertation (MEng)--University of Pretoria, 2017.
Electrical, Electronic and Computer Engineering
MEng
Unrestricted
Hammond, Patrick Douglas. "Deep Synthetic Noise Generation for RGB-D Data Augmentation." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7516.
Full textYanasse, Corina da Costa Freitas. "Statistical analysis of synthetic aperture radar images and its applications to system analysis and change detection." Thesis, University of Sheffield, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363390.
Full textHagvall, Hörnstedt Julia. "Synthesis of Thoracic Computer Tomography Images using Generative Adversarial Networks." Thesis, Linköpings universitet, Avdelningen för medicinsk teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158280.
Full textWarrick, Abbie Lynn 1967. "Application of wavelet and radon-based techniques to the internal wake problem in synthetic aperture radar images." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/282191.
Full textPreiss, Mark. "Detecting scene changes using synthetic aperture radar interferometry /." Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09php9242.pdf.
Full textBrinkman, Wade H. "Focusing ISAR images using fast adaptive time-frequency and 3D motion detection on simulated and experimental radar data." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Jun%5FBrinkman.pdf.
Full textThesis Advisor(s): Michael A. Morgan, Thayananthan Thayaparan. Includes bibliographical references (p. 119-120). Also available online.
Schilling, Lennart. "Generating synthetic brain MR images using a hybrid combination of Noise-to-Image and Image-to-Image GANs." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166034.
Full textReppucci, Antonio Verfasser], and Hartmut [Akademischer Betreuer] [Graßl. "Extreme Wind and Wave Conditions in Tropical Cyclones Observed from Synthetic Aperture Radar Images / Antonio Reppucci. Betreuer: Hartmut Graßl." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/103340344X/34.
Full textPetre, Valentina. "Generating synthetic 3-D images of objects lit by speckle light, providing a test for 3-D reconstruction algorithms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ44033.pdf.
Full textRezende, Djaine Damiati. "Transdução e realidade híbrida em Avatar : uma experiência media assemblage /." Bauru : [s.n.], 2010. http://hdl.handle.net/11449/89494.
Full textBanca: Heloisa Helou Doca
Banca: Ana Silvia Lopes Davi Médola
Resumo: O filme Avatar (2009d), dirigido por James Cameron, trouxe inovações tecnológicas capazes de gerar efeitos visuais e sensoriais sem precedentes na história do cinema, além de promover, por meio das estratégias de construção de mundos e aspersão de conteúdos transmídia, efeitos imersivos análogos aos propostos pelas imagens corporificadas que emergem da tela durante a exibição do longametragem e que se caracterizam pelo uso da realidade aumentada. Essa combinação instaura um novo paradigma no âmbito da narrativa audiovisual adentrando o espaço híbrido da percepção, no que diz respeito tanto às fronteiras entre virtual e atual, quando entre real e ficcional, fenômeno a que chamamos aqui de media assemblage. Analisaremos as estratégias de sentido utilizadas dentro e fora do suporte cinematográfico, a fim de estabelecer relações entre a dialógica implícita no uso das tecnologias aplicadas ao processo de potencialização sensória e os efeitos de densidade conseguidos por meio da construção do universo narrativo multiplataformas, tendo como base as ideias de transdução e sinequismo desenvolvidas por Charles Sanders Peirce
Abstract: The Avatar movie directed by James Cameron (2009d) launched technological innovations able to generate never seen before visual and sensorial effects in movie industry and promote, through the strategies of world-building and sprinkling of transmedia content, immersive effects similar to those proposed by the embodied images that emerge from the screen during its displaying characterizing itself by the use of expanded realities. This combination establishes a new paradigm in the context of audiovisual narrative entering the hybrid space of perception, both with regard to the borders between virtual and actual as the real and fictional, a phenomenon that we called here by media assemblage. In this undertaking we analyze the meaning strategies used inside and outside of cinema medium, towards to establish a relation between the implicit dialogic of the technologies uses applied to the process of sensory potentializing and the density effects achieved through the construction of the narrative universe multi=platform, based on ideas of transducation and synechism developed by Charles Sanders Peirce
Mestre