Dissertations / Theses on the topic 'Synthetic gene circuits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Synthetic gene circuits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Checkley, Stephen. "Engineering tuneable gene circuits in yeast." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/engineering-tuneable-gene-circuits-in-yeast(71dda344-8802-4862-9b29-1a671f4c96ab).html.
Full textBoada, Acosta Yadira Fernanda. "A systems engineering approach to model, tune and test synthetic gene circuits." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/112725.
Full textLa biologia sintètica es defineix com l'enginyeria de la biologia: el (re) disseny i construcció de noves parts, dispositius i sistemes biològics per a realitzar noves funcions útils que es basen a principis elucidats de la biologia i l'enginyeria. Per facilitar la construcció ràpida, reproduïble i predictible de aquests sistemes biològics a partir de conjunts de components és necessari desenvolupar nous mètodes i eines. La tesi planteja la optimització multiobjectiu com el marc adequat per a tractar els problemes comuns que apareixen en el disseny racional i l' ajust òptim dels circuits genètics sintètics. Utilitzant un enfocament clàssic d'enginyeria de sistemes, la tesi es centra principalment en: i) el modelatge de circuits genètics sintètics basat en primers principis, ii) l' estimació de paràmetres de models a partir de dades experimentals i iii) l' ajust basat en models per aconseguir el rendiment desitjat dels circuits. S'han utilitzat dos circuits genètics sintètics de diferent naturalesa i amb diferents objectius i problemes: un circuit de prealimentació de tipus 1 incoherent (I1-FFL) que exhibeix la important propietat biològica d'adaptació, i un circuit de quorum sensing i realimentació (QS/Fb) que comprèn dos bucles de realimentació entrellaçats -un intracel·lular i un basat en la comunicació de cèl·lula a cèl·lula- dis-senyat per regular el nivell mitjà d'expressió normal d'una proteïna d'interès mentre es minimitza la seua variació al llarg de la població de cèl·lules. Els dos circuits han estat analitzats in silico i implementats in vivo. En tots dos casos, s'han desenvolupat models basats en primers principis d'aquests circuits. Després es presta especial atenció a delinear com obtenir models d'ordre reduït susceptibles de estimació de paràmetres, però mantenint el significat biològic. L' estimació dels paràmetres del model a partir de les dades experimentals es considera en diferents escenaris, tant utilitzant models determinístics com estocàstics. Per al circuit I1-FFL es consideren models determinístics. La tesi planteja la utilització de models locals utilitzant la optimització multiobjectiu per realitzar l'estimació de parametres del model sota escenaris amb estructura de model incompleta (dinàmica no modelada). Per al circuit de QS/Fb, una estructura controlada per realimentació, el problema tractat és la manca d'excitabilitat dels senyals. La tesi proposa una metodologia de estimació en dues etapes utilitzant models estocàstics. La metodologia permet utilitzar dades de curs temporal promediats de la població i mesures de distribució en estat estacionari d'una sola una cèl·lula. L' ajust de circuits basat en models per aconseguir el rendiment desitjat dels circuits també s' aborda mitjançant la optimització multiobjectiu. Per al circuit QS/Fb, es fa un anàlisi estocàstic complet. La tesi aborda com tenir en compte correctament tant el soroll intrínsec com l' extrínsec, les dues principals fonts de soroll en els circuits genètics sintètics. S' analitza l'equilibri entre dues fonts de soroll i el paper que exerceixen en el bucle de realimentació intracel·lular, les i en la realimentació extracel·lular de tota la població. La principal conclusió es que la complexa interacció entre els dos canals de realimentació fa necessari l' ús de la optimització multiobjectiu per al adequat ajust del circuit. En aquesta tesi, a més de l'ús adequat d'eines d'optimització multiobjectiu, la principal preocupació és com derivar directives per al ajust in silico de paràmetres de circuits que puguin aplicar-se de forma realista en viu en un laboratori estàndard. Així, com a alternativa a l'anàlisi de sensibilitat de paràmetres clàssic, la tesi proposa l'ús de l' tècniques de l'agrupació al llarg dels fronts de Pareto, relacionant el compromís de dessempeny amb les regions en l'espai d'paràmetres.
Synthetic biology is defined as the engineering of biology: the deliberate (re)design and construction of novel biological and biologically based parts, devices and systems to perform new functions for useful purposes, that draws on principles elucidated from biology and engineering. Methods and tools are needed to facilitate fast, reproducible and predictable construction of biological systems from sets of biological components. This thesis raises multi-objective optimization as the proper framework to deal with common problems arising in rational design and optimal tuning of synthetic gene circuits. Using a classical systems engineering approach, the thesis mainly addresses: i) synthetic gene circuit modeling based on first principles, ii) model parameters estimation from experimental data and iii) model-based tuning to achieve desired circuit performance. Two gene synthetic circuits of different nature and with different goals and inherent problems have been used throughout the thesis: an Incoherent type 1 feedforward circuit (I1-FFL) that exhibits the important biological property of adaptation, and a Quorum sensing/Feedback circuit (QS/Fb) comprising two intertwined feedback loops -an intracellular one and a cell-to-cell communication-based one-- designed to regulate the mean expression level of a protein of interest while minimizing its variance across the population of cells. Both circuits have been analyzed in silico and implemented in vivo. In both cases, circuit modeling based on first principles has been carried out. Then, special attention is paid to illustrate how to obtain reduced order models amenable for parameters estimation yet keeping biological significance. Model parameters estimation from experimental data is considered in different scenarios, both using deterministic and stochastic models. For the I1-FFL circuit, deterministic models are considered. In this case, the thesis raises ensemble modeling using multi-objective optimization to perform model parameters estimation under scenarios with incomplete model structure (unmodeled dynamics). For the QS/Fb gene circuit, a feedback controlled structure, the lack of excitability of the signals is the problem addressed. The thesis proposes a two-stage estimation methodology using stochastic models. The methodology allows using population averaged time-course data and steady state distribution measurements at the single-cell level. Model-based circuit tuning to achieve desired circuit performance is also addressed using multi-objective optimization. First, for the QS/Fb feedback control circuit, a complete stochastic analysis is performed. Here, the thesis addresses how to correctly take into account both intrinsic and extrinsic noise, the two main sources of noise in gene synthetic circuits. The trade-off between both sources of noise, and the role played by in the intracellular single-cell feedback loop and the extracellular population-wide feedback is analyzed. The main conclusion being that the complex interplay between both feedback channels compel the use of multi-objective optimization for proper tuning of the circuit to achieve desired performance. Thus, the thesis wraps up all the previous results and uses them to address circuit tuning for desired performance. Here, besides the proper use of multi-objective optimization tools, the main concern is how to derive guidelines for circuit parameters tuning in silico that can realistically be applied in vivo in a standard laboratory. Thus, as an alternative to classical parameters sensitivity analysis, the thesis proposes the use of clustering techniques along the optimal Pareto fronts relating the performance trade-offs with regions in the circuits parameters space.
This work has been partially supported by the Spanish Government (CICYT DPI2014- 55276-C5-1) and the European Union (FEDER). The author was recipient of the grant Formación de Personal Investigador by the Universitat Politècnica de València, subprogram 1 (FPI/2013-3242). She was also recipient of the competitive grants for pre-doctoral stays Erasmus Student Placement-European Programme 2015, and FPI Mobility program 2016 of the Universitat Politècnica de València. She also received the competitive grant for a pre-doctoral stay Becas de movilidad para Jóvenes Profesores e Investigadores 2016, Programa de Becas Iberoamérica of the Santander Bank.
Boada Acosta, YF. (2018). A systems engineering approach to model, tune and test synthetic gene circuits [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112725
TESIS
Zhao, Jia. "Engineering serine integrase-based synthetic gene circuits for cellular memory and counting." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6911/.
Full textTroisi, Lucie. "Development of a new class of synthetic gene circuits based on protein-protein interactions." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS728.
Full textSynthetic biology, by its engineering approach, promise to revolutionize the way scientists manipulate and analyze living systems. In this project, we propose to develop a new class of synthetic gene circuits whose fine tuning rely on the affinity competition between active and inactive forms of a transcription factor. Modelling, together with an in silico evolutionary approach, will be used to determine molecular parameters and network topologies required for a given functionality. Circuits will be assembled accordingly and their expression in mammalian cells measured to confirm the expected response or correct our model. Using this methodology, we plan to build multi-inputs circuits with tunable response function, as well as new bistable and oscillatory circuits. The new investigated class of circuits will also be extended to multi-cellular networks exhibiting symmetry breaking or oscillating patterns. This fundamental project bridging modelling and experimental validation will promote the development of advanced targeting circuits with promising applications in diagnosis, gene therapy and complex tissue engineering
Bandiera, Lucia <1988>. "Effects of Transcriptional and Post-Transcriptional Control Mechanisms on Biological Noise in Synthetic Gene Circuits." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7403/1/Bandiera_Lucia_Tesi.pdf.
Full textFerry, Quentin R. V. "RNA-based engineering of inducible CRISPR-Cas9 transcription factors for de novo assembly of eukaryotic gene circuits." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:b89c1b17-ea75-4049-a5d0-7cd1b5d0bd8e.
Full textHarris, Andreas William Kisling. "The design of gene regulatory networks with feedback and small non-coding RNA." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:e3a323b1-9067-415d-8728-6c70c1b6cf23.
Full textAo, Xue. "Study of fluctuations in gene regulation circuits with memory." HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1428.
Full textMatsuura, Satoshi. "Synthetic RNA-based logic computation in mammalian cells." Kyoto University, 2019. http://hdl.handle.net/2433/242426.
Full textJunetha, Syed Jabarulla. "Chemical Biology Approaches for Regulating Eukaryotic Gene Expression." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/202664.
Full textVignoni, Alejandro. "Invariance and Sliding Modes. Application to coordination of multi-agent systems, bioprocesses estimation, and control in living cells." Doctoral thesis, Editorial Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/37743.
Full textVignoni, A. (2014). Invariance and Sliding Modes. Application to coordination of multi-agent systems, bioprocesses estimation, and control in living cells [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37743
Alfresco
Wong, Meng Lai Nicole. "Medical applications of synthetic gene circuits and switches." Thesis, 2020. https://hdl.handle.net/2144/41028.
Full text2022-05-18T00:00:00Z
Swaminathan, Anandh. "Application, Computation, and Theory for Synthetic Gene Circuits." Thesis, 2018. https://thesis.library.caltech.edu/10606/14/main.pdf.
Full textThe field of synthetic gene circuits is concerned with engineering novel gene expression dynamics into organisms. This field, a subset of synthetic biology, was started almost two decades ago with the creation of two synthetic circuits: a bistable toggle switch and an oscillator. From the very outset, modeling has played a role in the development of synthetic circuits. However, modeling has been used to gain qualitative insight into dynamics, and actual quantitative modeling has been lagging behind.
Parameters for quantitative models for biological systems often cannot be adequately estimated from measured data, because far too many sets of parameters can produce the same set of limited measured outputs. Additionally, models for synthetic gene circuits are often not correct the first time, and iterating on cycles of modeling and parameter estimation is difficult. Finally, there is a gap between development of modeling and system identification tools and their application to experiments on actual synthetic gene circuits.
This thesis attempts to work towards addressing these issues with quantitative modeling for synthetic gene circuits. First, we derive theoretical conditions for identifiability of stochastic linear systems from heterogenous types of measurement data. These identifiability conditions can provide insight into what type of model to use and what measurements to collect in order to ensure that the resulting model can be identified.
Second, we develop a software package for fast and flexible modeling and parameter estimation for synthetic gene circuits. The user can input models into our software using a simple text format and perform simulations of all types at optimized speeds. By inputting measured experimental data along with the model, the software can be used to perform Bayesian parameter estimation in an automated manner. To bridge the gap between computation and application, we apply this software to parameter estimation of DNA recombinase dynamics using real experimental data collected in an in vitro cell extract.
Finally, we use modeling to guide the design of an improved single gene synthetic oscillator. While the original synthetic genetic oscillator contained three genes, we show that a simple circuit with a single gene can produce robust and synchronized oscillations across a population.
Our results constitute an additional step towards the incorporation of quantitative modeling and parameter inference as part of the design-build-test cycle for synthetic gene circuits.
Nagaraj, Seema. "Transcriptional Regulation in Synthetic Gene Networks." Thesis, 2010. http://hdl.handle.net/1807/24838.
Full textAng, Jordan. "Designing Synthetic Gene Circuits for Homeostatic Regulation and Sensory Adaptation." Thesis, 2013. http://hdl.handle.net/1807/35763.
Full text"Construction of Gene Circuits to Control Cell Behavior." Master's thesis, 2016. http://hdl.handle.net/2286/R.I.38624.
Full textDissertation/Thesis
Masters Thesis Bioengineering 2016
Cornejo, de los Santos Emmanuel Lorenzo. "Expanding the Toolkit for Synthetic Biology: Frameworks for Native-like Non-natural Gene Circuits." Thesis, 2015. https://thesis.library.caltech.edu/8865/1/delossantos_elc_2015_thesis.pdf.
Full textSinghal, Vipul. "Modeling, Computation, and Characterization to Accelerate the Development of Synthetic Gene Circuits in Cell-Free Extracts." Thesis, 2019. https://thesis.library.caltech.edu/11161/50/CODE_test015_tetRdata.zip.
Full textSynthetic biology may be defined as an attempt at using engineering principles to design and build novel biological functionalities. An important class of such functionalities involves the bottom up design of genetic networks (or 'circuits') to control cellular behavior. Performing design iterations on these circuits in vivo is often a time consuming process. One approach that has been developed to address these long design times is to use E. coli cell extracts as simplified circuit prototyping environments. The analogy with similar approaches in engineering, such as prototyping using wind tunnels and breadboards, may be extended by developing accompanying computer aided design tools. In this thesis, we discuss the development of computational and mathematical tools to accelerate circuit prototyping in the TX-TL cell free prototyping platform, and demonstrate some applications of these tools.
We start by discussing the problem of reducing circuit behavior variability between different batches of TX-TL cell extracts. To this end, we demonstrate a model-based methodology for calibrating extract batches, and for using the calibrations to 'correct' the behavior of genetic circuits between batches. We also look at the interaction of this methodology with the phenomenon of parameter non-identifiability, which occurs when the parameter identification inverse problem has multiple solutions. In particular, we derive conditions under which parameter non-identifiability does not hinder our modeling objectives, and subsequently demonstrate the use of such non-identifiable models in performing data variability reduction.
Next, we describe txtlsim, a MATLAB Simbiology based toolbox for automatically generating models of genetic circuits in TX-TL, and for using these models for part characterization and circuit behavior prediction. Large genetic circuits can have non-negligible resource usage needs, leading to unintended interactions between circuit nodes arising due to the loading of cellular machinery, transcription factors or other regulatory elements. The usage of consumable resources like nucleotides and amino acids can also have non-trivial effects on complex genetic circuits. These types of effects are handled by the modeling framework of txtlsim in a natural way.
We also highlight mcmc-simbio, a smaller toolbox within txtlsim for performing concurrent Bayesian parameter inference on Simbiology models. Concurrent inference here means that a common set of parameters can be identified using data from an ensemble of different circuits and experiments, with each experiment informing a subset of the parameters. The combination of the concurrence feature with the fact that Markov chain Monte Carlo based Bayesian inference methods allow for the direct visualization of parameter non-identifiability enables the design of ensembles of experiments that reduce such non-identifiability.
Finally, we end with a method for performing model order reduction on transcription and translation elongation models while maintaining the ability of these models to track resource consumption. We show that due to their network topology, our models cannot be brought into the two-timescale form of singular perturbation theory when written in species concentration coordinates. We identify a coordinate system in which singular perturbation theory may be applied to chemical reaction networks more naturally, and use this to achieve the desired model reduction.
Marguet, Philippe Robert. "Molecular Bioengineering: From Protein Stability to Population Suicide." Diss., 2010. http://hdl.handle.net/10161/3143.
Full textDriven by the development of new technologies and an ever expanding knowledge base of molecular and cellular function, Biology is rapidly gaining the potential to develop into a veritable engineering discipline - the so-called `era of synthetic biology' is upon us. Designing biological systems is advantageous because the engineer can leverage existing capacity for self-replication, elaborate chemistry, and dynamic information processing. On the other hand these functions are complex, highly intertwined, and in most cases, remain incompletely understood. Brazenly designing within these systems, despite large gaps in understanding, engenders understanding because the design process itself highlights gaps and discredits false assumptions.
Here we cover results from design projects that span several scales of complexity. First we describe the adaptation and experimental validation of protein functional assays on minute amounts of material. This work enables the application of cell-free protein expression tools in a high-throughput protein engineering pipeline, dramatically increasing turnaround time and reducing costs. The parts production pipeline can provide new building blocks for synthetic biology efforts with unprecedented speed. Tools to streamline the transition from the in vitro pipeline to conventional cloning were also developed. Next we detail an effort to expand the scope of a cysteine reactivity assay for generating information-rich datasets on protein stability and unfolding kinetics. We go on to demonstrate how the degree of site-specific local unfolding can also be determined by this method. This knowledge will be critical to understanding how proteins behave in the cellular context, particularly with regards to covalent modification reactions. Finally, we present results from an effort to engineer bacterial cell suicide in a population-dependent manner, and show how an underappreciated facet of plasmid physiology can produce complex oscillatory dynamics. This work is a prime example of engineering towards understanding.
Dissertation
"Engineering of Synthetic DNA/RNA Modules for Manipulating Gene Expression and Circuit Dynamics." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.62937.
Full textDissertation/Thesis
Doctoral Dissertation Biomedical Engineering 2020
"Design and Engineering of Synthetic Gene Networks." Doctoral diss., 2017. http://hdl.handle.net/2286/R.I.45573.
Full textDissertation/Thesis
Doctoral Dissertation Biomedical Engineering 2017