Academic literature on the topic 'Synthetic Database Generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Synthetic Database Generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Synthetic Database Generation"
Priyadarshini, Pallavi, Fengqiong Qin, Ee-Peng Lim, and Wee-Keong Ng. "Parameter driven synthetic web database generation." Journal of Systems and Software 69, no. 1-2 (January 2004): 29–42. http://dx.doi.org/10.1016/s0164-1212(03)00002-5.
Full textSanghi, Anupam, Shadab Ahmed, and Jayant R. Haritsa. "Projection-compliant database generation." Proceedings of the VLDB Endowment 15, no. 5 (January 2022): 998–1010. http://dx.doi.org/10.14778/3510397.3510398.
Full textPujol, David, Amir Gilad, and Ashwin Machanavajjhala. "PreFair: Privately Generating Justifiably Fair Synthetic Data." Proceedings of the VLDB Endowment 16, no. 6 (February 2023): 1573–86. http://dx.doi.org/10.14778/3583140.3583168.
Full textPavez, Vicente, Gabriel Hermosilla, Francisco Pizarro, Sebastián Fingerhuth, and Daniel Yunge. "Thermal Image Generation for Robust Face Recognition." Applied Sciences 12, no. 1 (January 5, 2022): 497. http://dx.doi.org/10.3390/app12010497.
Full textDinges, Laslo, Ayoub Al-Hamadi, Moftah Elzobi, Sherif El-etriby, and Ahmed Ghoneim. "ASM Based Synthesis of Handwritten Arabic Text Pages." Scientific World Journal 2015 (2015): 1–18. http://dx.doi.org/10.1155/2015/323575.
Full textSazonova, Kateryna, Olena Nosovets, Vitalii Babenko, and Olga Averianova. "GENERATION OF SYNTHETICAL MEDICAL DATA BY MDR-ANALYSIS." Proceedings of the National Aviation University 87, no. 2 (July 27, 2021): 31–36. http://dx.doi.org/10.18372/2306-1472.87.15719.
Full textBurman, Nitin, Claudia Manetti, Paulo Tostes, Joost Lumens, and Jan D'hooge. "A pipeline to enable large-scale generation of diverse 2D cardiac synthetic ultrasound recordings corresponding to healthy and heart failure virtual patients." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A279. http://dx.doi.org/10.1121/10.0016267.
Full textKuriki, Mikaele Silva, Francisco Lledo Santos, and Cristiano Poleto. "Small-Scale Wetland Model for Synthetic Sewage Treatment." Ciência e Natura 44 (April 21, 2022): e25. http://dx.doi.org/10.5902/2179460x68834.
Full textBaowaly, Mrinal Kanti, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen. "Synthesizing electronic health records using improved generative adversarial networks." Journal of the American Medical Informatics Association 26, no. 3 (December 7, 2018): 228–41. http://dx.doi.org/10.1093/jamia/ocy142.
Full textLoisel, Hubert, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski. "A synthetic optical database generated by radiative transfer simulations in support of studies in ocean optics and optical remote sensing of the global ocean." Earth System Science Data 15, no. 8 (August 18, 2023): 3711–31. http://dx.doi.org/10.5194/essd-15-3711-2023.
Full textDissertations / Theses on the topic "Synthetic Database Generation"
Gwinnett, Claire M. B. "The Use of Inexperienced Personnel in the Analysis of Synthetic Textile Fibres using Polarized Light Microscopy for the Generation of Data Suitable for the Production of a Synthetic Fibres Database." Thesis, Staffordshire University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522253.
Full textKříž, Blažej. "Framework pro tvorbu generátorů dat." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236623.
Full textKnoors, Daan. "Utility of Differentially Private Synthetic Data Generation for High-Dimensional Databases." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235640.
Full textVid databehandling av känslig information måste särskild hänsyn tas till sekretessbevarande för att undvika oavsiktligt röjande av konfidentiell information. Med sekretessingenjörsskap menas möjliggörandet av informationssäker mönsterextraktion utan att kompromissa någons rätt tillett privatliv. Under det senaste decenniet har akademiker aktivt försökt finna starkare definitioner och metodiker för att uppnå ett sekretessbevarande men endå bibehålla datats nytta. Differentielt hemlighållande(eng. Differential Privacy) framkom som en "de facto" standard för att uppnå sekretessbevarande och det föreslås kontinuerligt nya tekniker baserade på denna. I synnerhet en metod fokuserar på generering av privata syntetiska databaser vilka härmar de statistiska mönster och särdrag från en konfidentiell datakälla på ett sekretessbevarande sätt. På grund av detta kan originaldatats format och nytta bibehållas men fortfarande delas och analyseras utan risk för sekretessöverträdelser. Tyvärr har denna metod sett liten tillämpning utanför akademia. Därför undersöker vi härmed dess potential för användande av hemlighållande syntetisk datagenerering i verkliga användarfall. Vi föreslår vidare ett nytt nyttjandegradsutvärderingramverk vilket ger ett enhetligt sätt att utvärdera diverse algorithmer gentemot varandra. Detta ramverk bygger vidare på de typiska akademiska utvärderingsmetoderna genom att inkorporera ett användarorienterat perspektiv och industrikrav samtidigt som prestandautvärdering av verkliga användarfall görs. Slutligen implementerar vi flera algoritmer med allmänt ändamål och utvärderar dem utifrån kriterierna för detta ramverk med syftet att i slutändan bestämma potentialen för hemlighållande syntetisk datagenerering utanför den akademiska domänen.
Knoors, Daan Josephus. "Utility of Differentially Private Synthetic Data Generation for High-Dimensional Databases." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237424.
Full textVid databehandling av känslig information måste särskild hänsyn tas till sekretessbevarande för att undvika oavsiktligt röjande av konfidentiell information. Med skretessingenjörsskap menas möjliggörandet av informationssäker mönsterextraktion utan att kompromissa någons rätt till ett privatliv. Under det senaste decenniet har akademiker aktivt försökt finna starkare definitioner och metodiker för att uppnå ett sekretessbevarande men endå bibehålla datats nytta. Differentielt hemlighållande (eng. Differential Privacy) framkom som en "de facto" standard för att uppnå sekretessbevarande och det föreslås kontinuerligt nya tekniker baserade på denna. I synnerhet en metod fokuserar på generering av privata syntetiska databaser vilka härmar de statistiska mönster och särdrag från en konfidentiell datakälla på ett sekretessbevarande sätt. På grund av detta kan originaldatats format och nytta bibehållas men fortfarande delas och analyseras utan risk för sekretessöverträdelser. Tyvärr har denna metod sett liten tillämpning utanför akademia. Därför undersöker vi härmed dess potential för användande av hemlighållande syntetisk datagenerering i verkliga användarfall. Vi föreslår vidare ett nytt nyttjandegradsutvärderingramverk vilket ger ett enhetligt sätt att utvärdera diverse algorithmer gentemot varandra. Detta ramverk bygger vidare på de typiska akademiska utvärderingsmetoderna genom att inkorporera ett användarorienterat perspektiv och industrikrav samtidigt som prestandautvärdering av verkliga användarfall görs. Slutligen implementerar vi flera algoritmer med allmänt ändamål och utvärderar dem utifrån kriterierna för detta ramverk med syftet att i slutändan bestämma potentialen för hemlighållande syntetisk datagenerering utanför den akademiska domänen.
Patki, Neha (Neha R. ). "The Synthetic Data Vault : generative modeling for relational databases." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/109616.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 79-80).
The goal of this thesis is to build a system that automatically creates synthetic data for enabling data science endeavors. To meet this goal, we present the Synthetic Data Vault (SDV), a system that builds generative models of relational databases. We are able to sample from the model and create synthetic data, hence the name SDV. When implementing the SDV, we developed an algorithm that computes statistics at the intersection of related database tables. We then use a state-of-the-art multivariate modeling approach to model this data. The SDV iterates through all possible relations, ultimately creating a model for the entire database. Once this model is computed, the same relational information allows the SDV to synthesize data by sampling from any part of the database. After building the SDV, we used it to generate synthetic data for five different publicly available datasets. We then published the datasets and asked data scientists to develop predictive models for them as part of a crowdsourced experiment. On May 18, 2016, preliminary analysis from the ongoing experiment provided evidence that the synthetic data can successfully replace original data for data science. Our analysis indicates that there is no significant difference in the work produced by data scientists who used synthetic data as opposed to real data. We conclude that the SDV is a viable solution for synthetic data generation. Our primary contribution is that we designed and implemented the first generative modeling system for relational databases that demonstratively synthesizes realistic data.
by Neha Patki.
M. Eng. in Computer Science and Engineering
Al-Hakawati, al-Dakkak Oumayma. "Extraction automatique de paramètres formantiques guidée par le contexte et élaboration de règles de synthèse." Grenoble INPG, 1988. http://www.theses.fr/1988INPG0056.
Full textBook chapters on the topic "Synthetic Database Generation"
Hall, David, and Lena Strömbäck. "Generation of Synthetic XML for Evaluation of Hybrid XML Systems." In Database Systems for Advanced Applications, 191–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14589-6_20.
Full textAlammar, Ammar, and Wassim Jabi. "Generation of a Large Synthetic Database of Office Tower's Energy Demand Using Simulation and Machine Learning." In Formal Methods in Architecture, 479–500. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2217-8_27.
Full textMateo-Sanz, Josep Maria, Antoni Martínez-Ballesté, and Josep Domingo-Ferrer. "Fast Generation of Accurate Synthetic Microdata." In Privacy in Statistical Databases, 298–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25955-8_24.
Full textBlanco-Justicia, Alberto, Najeeb Moharram Jebreel, Jesús A. Manjón, and Josep Domingo-Ferrer. "Generation of Synthetic Trajectory Microdata from Language Models." In Privacy in Statistical Databases, 172–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13945-1_13.
Full textPires, Carlos Eduardo, Priscilla Vieira, Márcio Saraiva, and Denilson Barbosa. "Generating Synthetic Database Schemas for Simulation Purposes." In Lecture Notes in Computer Science, 502–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23091-2_44.
Full textNeves, João C., Ruben Tolosana, Ruben Vera-Rodriguez, Vasco Lopes, Hugo Proença, and Julian Fierrez. "GAN Fingerprints in Face Image Synthesis." In Multimedia Forensics, 175–204. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7621-5_8.
Full textSakshaug, Joseph W., and Trivellore E. Raghunathan. "Nonparametric Generation of Synthetic Data for Small Geographic Areas." In Privacy in Statistical Databases, 213–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11257-2_17.
Full textDrechsler, Jörg. "Using Support Vector Machines for Generating Synthetic Datasets." In Privacy in Statistical Databases, 148–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15838-4_14.
Full textAyala-Rivera, Vanessa, A. Omar Portillo-Dominguez, Liam Murphy, and Christina Thorpe. "COCOA: A Synthetic Data Generator for Testing Anonymization Techniques." In Privacy in Statistical Databases, 163–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45381-1_13.
Full textYu, Chengcheng, Fan Xia, Qunyan Zhang, Haixin Ma, Weining Qian, Minqi Zhou, Cheqing Jin, and Aoying Zhou. "BSMA-Gen: A Parallel Synthetic Data Generator for Social Media Timeline Structures." In Database Systems for Advanced Applications, 539–42. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05813-9_40.
Full textConference papers on the topic "Synthetic Database Generation"
Lindahl, Charles E., Alan Cockcroft, Thomas Derryberry, John Sigler, and Mark Yablonski. "Synthetic multisensor database generation and validation." In Orlando '90, 16-20 April, edited by Hatem N. Nasr and Firooz A. Sadjadi. SPIE, 1990. http://dx.doi.org/10.1117/12.21797.
Full textEndres, Markus, Asha Mannarapotta Venugopal, and Tung Son Tran. "Synthetic Data Generation: A Comparative Study." In IDEAS'22: International Database Engineered Applications Symposium. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3548785.3548793.
Full textRigney, Matthew, Brad Seal, and Chris Porter. "Generation of high fidelity signature for AI/ML training database generation." In Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications, edited by Kimberly E. Manser, Raghuveer M. Rao, and Christopher L. Howell. SPIE, 2023. http://dx.doi.org/10.1117/12.2663906.
Full textPlacidi, Simone, Alessandro Vetere, Eugenio Pino, and Adriano Meta. "Advanced SAR simulator for ATR and AI database generation." In 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2021. http://dx.doi.org/10.1109/apsar52370.2021.9688497.
Full textLi, Wanxin. "Supporting Database Constraints in Synthetic Data Generation based on Generative Adversarial Networks." In SIGMOD/PODS '20: International Conference on Management of Data. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3318464.3384414.
Full textViscaino - Quito, Andres, and Luis Serpa-Andrade. "Proposal for the Generation of Profiles using a Synthetic Database." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001462.
Full textBonjean, Maxime E., Jacques G. Verly, and Jens Schiefele. "Generation of infrared imagery from an aviation synthetic vision database." In Defense and Security, edited by Jacques G. Verly. SPIE, 2005. http://dx.doi.org/10.1117/12.604462.
Full textWon, Jin-Ju, Sungho Kim, Youngrea Cho, Woo-Jin Song, and So-Hyun Kim. "Synthetic SAR/IR database generation for sensor fusion-based A.T.R." In 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2015. http://dx.doi.org/10.1109/urai.2015.7358893.
Full textFriedrich, Axel, Helmut Raabe, Jens Schiefele, and Kai Uwe Doerr. "Airport databases for 3D synthetic-vision flight-guidance displays: database design, quality assessment, and data generation." In AeroSense '99, edited by Jacques G. Verly. SPIE, 1999. http://dx.doi.org/10.1117/12.354413.
Full textRogozik, Juergen, Jens Schiefele, Axel Friedrich, Thorsten Wiesemann, and Wolfgang Kubbat. "Requirements and generation of a terrain and obstacle database for synthetic vision." In Aerospace/Defense Sensing, Simulation, and Controls, edited by Jacques G. Verly. SPIE, 2001. http://dx.doi.org/10.1117/12.438013.
Full textReports on the topic "Synthetic Database Generation"
Erner, Karen A. Methods for Generating Synthetic Databases with Specified Statistical Properties. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada307081.
Full text