To see the other types of publications on this topic, follow the link: Synthetic aperture microscopy.

Journal articles on the topic 'Synthetic aperture microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Synthetic aperture microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ralston, Tyler S., Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart. "Interferometric synthetic aperture microscopy." Nature Physics 3, no. 2 (January 21, 2007): 129–34. http://dx.doi.org/10.1038/nphys514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Cai, De Cai, Zhongfei Li Zhongfei Li, and Sung-Liang Chen Sung-Liang Chen. "Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique." Chinese Optics Letters 13, no. 10 (2015): 101101–4. http://dx.doi.org/10.3788/col201513.101101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ralston, T. S., G. L. Charvat, S. G. Adie, B. J. Davis, P. S. Carney, and S. A. Boppart. "Interferometric Synthetic Aperture Microscopy: Microscopic Laser Radar." Optics and Photonics News 21, no. 6 (June 1, 2010): 32. http://dx.doi.org/10.1364/opn.21.6.000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Yang, Xiong Kai Benjamin Chng, Steven G. Adie, Stephen A. Boppart, and P. Scott Carney. "Multifocal interferometric synthetic aperture microscopy." Optics Express 22, no. 13 (June 27, 2014): 16606. http://dx.doi.org/10.1364/oe.22.016606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tu, Han Yen, Yueh Long Lee, and Chau Jern Cheng. "Super-Resolution Imaging in a Close-Packed Synthetic Aperture Digital Holographic Microscopy." Applied Mechanics and Materials 404 (September 2013): 490–94. http://dx.doi.org/10.4028/www.scientific.net/amm.404.490.

Full text
Abstract:
This work presents a close-packed synthetic aperture method for superresolution imaging in digital holographic microscopy. The superresolution imaging technique is based on beam-rotation approach to collect the different bandpass spectrum of the sample. The close-packed information from synthetic aperture process can be used to enhance the reconstructed imaging resolution under low-numerical-aperture microscope objective. Simulated and experimental results show the characteristics of the close-packed synthetic aperture and the influence on superresolution imaging.
APA, Harvard, Vancouver, ISO, and other styles
6

South, Fredrick A., Yuan-Zhi Liu, Yang Xu, Nathan D. Shemonski, P. Scott Carney, and Stephen A. Boppart. "Polarization-sensitive interferometric synthetic aperture microscopy." Applied Physics Letters 107, no. 21 (November 23, 2015): 211106. http://dx.doi.org/10.1063/1.4936236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Luo, Wei, Alon Greenbaum, Yibo Zhang, and Aydogan Ozcan. "Synthetic aperture-based on-chip microscopy." Light: Science & Applications 4, no. 3 (March 2015): e261-e261. http://dx.doi.org/10.1038/lsa.2015.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ralston, Tyler S., Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart. "Real-time interferometric synthetic aperture microscopy." Optics Express 16, no. 4 (February 11, 2008): 2555. http://dx.doi.org/10.1364/oe.16.002555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, Brynmor, Daniel Marks, Tyler Ralston, P. Carney, and Stephen Boppart. "Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy." Sensors 8, no. 6 (June 11, 2008): 3903–31. http://dx.doi.org/10.3390/s8063903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coquoz, Séverine, Arno Bouwens, Paul J. Marchand, Jérôme Extermann, and Theo Lasser. "Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy." Optics Express 25, no. 24 (November 22, 2017): 30807. http://dx.doi.org/10.1364/oe.25.030807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

CHEN, XIAODONG, QIAO LI, YONG LEI, YI WANG, and DAOYIN YU. "SDOCT IMAGE RECONSTRUCTION BY INTERFEROMETRIC SYNTHETIC APERTURE MICROSCOPY." Journal of Innovative Optical Health Sciences 03, no. 01 (January 2010): 17–23. http://dx.doi.org/10.1142/s1793545810000812.

Full text
Abstract:
Spectral domain optical coherence tomography (SDOCT) is a noninvasive, cross-sectional imaging technique that measures depth resolved reflectance of tissue by Fourier transforming the spectral interferogram with the scanning of the reference avoided. Interferometric synthetic aperture microscopy (ISAM) is an optical microscopy computed-imaging technique for measuring the optical properties of biological tissues, which can overcome the compromise between depth of focus and transverse resolution. This paper describes the principle of SDOCT and ISAM, which multiplexes raw acquisitions to provide quantitatively meaningful data with reliable spatially invariant resolution at all depths. A mathematical model for a coherent microscope with a planar scanning geometry and spectral detection was described. The two-dimensional fast Fourier transform (FFT) of spectral data in the transverse directions was calculated. Then the nonuniform ISAM resampling and filtering was implemented to yield the scattering potential within the scalar model. Inverse FFT was used to obtain the ISAM reconstruction. One scatterer, multiple scatterers, and noisy simulations were implemented by use of ISAM to catch spatially invariant resolution. ISAM images were compared to those obtained using standard optical coherence tomography (OCT) methods. The high quality of the results validates the rationality of the founded model and that diffraction limited resolution can be achieved outside the focal plane.
APA, Harvard, Vancouver, ISO, and other styles
12

Li Qiao, 李乔, 陈晓冬 Chen Xiaodong, 雷湧 Lei Yong, 汪毅 Wang Yi, and 郁道银 Yu Daoyin. "Approximate Wavenumber Domain Algorithm for Interferometric Synthetic Aperture Microscopy." Chinese Journal of Lasers 37, no. 11 (2010): 2725–29. http://dx.doi.org/10.3788/cjl20103711.2725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Deng, Zilin, Xiaoquan Yang, Hui Gong, and Qingming Luo. "Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy." Journal of Applied Physics 109, no. 10 (May 15, 2011): 104701. http://dx.doi.org/10.1063/1.3585828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chen, Xiaodong, Qiao Li, Yong Lei, Yi Wang, and Daoyin Yu. "Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy." Optics Communications 283, no. 9 (May 2010): 1993–96. http://dx.doi.org/10.1016/j.optcom.2009.12.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kim, Moonseok, Youngwoon Choi, Christopher Fang-Yen, Yongjin Sung, Ramachandra R. Dasari, Michael S. Feld, and Wonshik Choi. "High-speed synthetic aperture microscopy for live cell imaging." Optics Letters 36, no. 2 (January 6, 2011): 148. http://dx.doi.org/10.1364/ol.36.000148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ralston, Tyler S., Steven G. Adie, Daniel L. Marks, Brynmor J. Davis, P. Scott Carney, and Stephen A. Boppart. "Real-Time Interferometric Synthetic Aperture Microscopy for Clinical Applications." Optics and Photonics News 19, no. 12 (December 1, 2008): 32. http://dx.doi.org/10.1364/opn.19.12.000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mico, Vicente, Zeev Zalevsky, and Javier García. "Synthetic aperture microscopy using off-axis illumination and polarization coding." Optics Communications 276, no. 2 (August 2007): 209–17. http://dx.doi.org/10.1016/j.optcom.2007.04.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ndop, J., T. J. Kim, W. Grill, and M. Pluta. "Synthetic aperture imaging by scanning acoustic microscopy with vector contrast." Ultrasonics 38, no. 1-8 (March 2000): 166–70. http://dx.doi.org/10.1016/s0041-624x(99)00091-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Marks, Daniel L., Brynmor J. Davis, Stephen A. Boppart, and P. Scott Carney. "Partially coherent illumination in full-field interferometric synthetic aperture microscopy." Journal of the Optical Society of America A 26, no. 2 (January 29, 2009): 376. http://dx.doi.org/10.1364/josaa.26.000376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Siyu, Xiaohua Feng, Fei Gao, Haoran Jin, Ruochong Zhang, Yunqi Luo, and Yuanjin Zheng. "GPU-accelerated two dimensional synthetic aperture focusing for photoacoustic microscopy." APL Photonics 3, no. 2 (February 2018): 026101. http://dx.doi.org/10.1063/1.5005145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Moonseok, Youngwoon Choi, Christopher Fang-Yen, Yongjin Sung, Kwanhyung Kim, Ramachandra R. Dasari, Michael S. Feld, and Wonshik Choi. "Three-dimensional differential interference contrast microscopy using synthetic aperture imaging." Journal of Biomedical Optics 17, no. 2 (2012): 026003. http://dx.doi.org/10.1117/1.jbo.17.2.026003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ralston, Tyler S., Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart. "Interferometric Synthetic Aperture Microscopy: Inverse Scattering for Optical Coherence Tomography." Optics and Photonics News 17, no. 12 (December 1, 2006): 25. http://dx.doi.org/10.1364/opn.17.12.000025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dupoisot, H., A. Poletaeff, G. Daury, and P. de Vernejoul. "Off-axis recording and synthetic aperture imaging in light microscopy." Optics Communications 72, no. 1-2 (July 1989): 42–46. http://dx.doi.org/10.1016/0030-4018(89)90253-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pan Feng, 潘锋, 肖文 Xiao Wen, 常君磊 Chang Junlei, and 王大勇 Wang Dayong. "Synthetic aperture method of digital holography for long-working-distance microscopy." High Power Laser and Particle Beams 22, no. 5 (2010): 978–82. http://dx.doi.org/10.3788/hplpb20102205.0978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang Yunxu, 张运旭, 高万荣 Gao Wanrong, and 伍秀玭 Wu Xiupin. "Interferometric Synthetic Aperture Microscopy Algorithm Based on Nonuniform Fast Fourier Transform." Acta Optica Sinica 37, no. 4 (2017): 0418001. http://dx.doi.org/10.3788/aos201737.0418001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wuest, Michael, Michael Schwarz, Johannes Eisenhart, Michael Nierla, and Stefan J. Rupitsch. "A matched model-based synthetic aperture focusing technique for acoustic microscopy." NDT & E International 104 (June 2019): 51–57. http://dx.doi.org/10.1016/j.ndteint.2019.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Deng, Zilin, Xiaoquan Yang, Hui Gong, and Qingming Luo. "Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy." Optics Express 20, no. 7 (March 19, 2012): 7555. http://dx.doi.org/10.1364/oe.20.007555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Park, Jongin, Seungwan Jeon, Jing Meng, Liang Song, Jin S. Lee, and Chulhong Kim. "Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy." Journal of Biomedical Optics 21, no. 3 (March 28, 2016): 036010. http://dx.doi.org/10.1117/1.jbo.21.3.036010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tu, Han-Yen, Wei-Jen Hsiao, Xin-Ji Lai, Yu-Chih Lin, and Chau-Jern Cheng. "Synthetic aperture common-path digital holographic microscopy with spiral phase filter." Journal of Optics 19, no. 6 (May 11, 2017): 065604. http://dx.doi.org/10.1088/2040-8986/aa6ccb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ralston, Tyler S., Steven G. Adie, Daniel L. Marks, Stephen A. Boppart, and P. Scott Carney. "Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography." Optics Letters 35, no. 10 (May 12, 2010): 1683. http://dx.doi.org/10.1364/ol.35.001683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lai, Xin-Ji, Han-Yen Tu, Chung-Hsin Wu, Yu-Chih Lin, and Chau-Jern Cheng. "Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy." Applied Optics 54, no. 1 (December 12, 2014): A51. http://dx.doi.org/10.1364/ao.54.000a51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Davis, Brynmor J., Tyler S. Ralston, Daniel L. Marks, Stephen A. Boppart, and P. Scott Carney. "Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy." Optics Letters 32, no. 11 (May 1, 2007): 1441. http://dx.doi.org/10.1364/ol.32.001441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Choi, Youngwoon, Moonseok Kim, Changhyeong Yoon, Taeseok Daniel Yang, Kyoung Jin Lee, and Wonshik Choi. "Synthetic aperture microscopy for high resolution imaging through a turbid medium." Optics Letters 36, no. 21 (October 28, 2011): 4263. http://dx.doi.org/10.1364/ol.36.004263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sheppard, Colin J. R., Shan Shan Kou, and Christian Depeursinge. "Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy." Journal of the Optical Society of America A 29, no. 3 (February 9, 2012): 244. http://dx.doi.org/10.1364/josaa.29.000244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maire, Guillaume, Hugues Giovannini, Anne Talneau, Patrick C. Chaumet, Kamal Belkebir, and Anne Sentenac. "Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy." Optics Letters 43, no. 9 (April 27, 2018): 2173. http://dx.doi.org/10.1364/ol.43.002173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Turner, Jake, Héctor Estrada, Moritz Kneipp, and Daniel Razansky. "Universal weighted synthetic aperture focusing technique (W-SAFT) for scanning optoacoustic microscopy." Optica 4, no. 7 (July 6, 2017): 770. http://dx.doi.org/10.1364/optica.4.000770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mason, Jonathan H., Mike E. Davies, and Pierre O. Bagnaninchi. "Blur resolved OCT: full-range interferometric synthetic aperture microscopy through dispersion encoding." Optics Express 28, no. 3 (January 28, 2020): 3879. http://dx.doi.org/10.1364/oe.379216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Levoy, M. "Synthetic Aperture Photography and Microscopy by Recording and Processing the 4D Light Field." Journal of Vision 7, no. 15 (March 28, 2010): 20. http://dx.doi.org/10.1167/7.15.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Davis, Brynmor J., Simon C. Schlachter, Daniel L. Marks, Tyler S. Ralston, Stephen A. Boppart, and P. Scott Carney. "Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy." Journal of the Optical Society of America A 24, no. 9 (2007): 2527. http://dx.doi.org/10.1364/josaa.24.002527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Turner, Jake, Héctor Estrada, Moritz Kneipp, and Daniel Razansky. "Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique." Optics Letters 39, no. 12 (June 3, 2014): 3390. http://dx.doi.org/10.1364/ol.39.003390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lee, Dennis J., Kyunghun Han, Hyeon Jeong Lee, and Andrew M. Weiner. "Synthetic aperture microscopy based on referenceless phase retrieval with an electrically tunable lens." Applied Optics 54, no. 17 (June 4, 2015): 5346. http://dx.doi.org/10.1364/ao.54.005346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jeon, Seungwan, Jihoon Park, Ravi Managuli, and Chulhong Kim. "A Novel 2-D Synthetic Aperture Focusing Technique for Acoustic-Resolution Photoacoustic Microscopy." IEEE Transactions on Medical Imaging 38, no. 1 (January 2019): 250–60. http://dx.doi.org/10.1109/tmi.2018.2861400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hillman, Timothy R., Thomas Gutzler, Sergey A. Alexandrov, and David D. Sampson. "High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy." Optics Express 17, no. 10 (April 28, 2009): 7873. http://dx.doi.org/10.1364/oe.17.007873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Neumann, Alexander, Yuliya Kuznetsova, and S. R. J. Brueck. "Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination." Optics Express 16, no. 25 (November 25, 2008): 20477. http://dx.doi.org/10.1364/oe.16.020477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, Yang, Yuan-Zhi Liu, Stephen A. Boppart, and P. Scott Carney. "Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography." Applied Optics 55, no. 8 (March 10, 2016): 2034. http://dx.doi.org/10.1364/ao.55.002034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cai, De, Zhongfei Li, Yao Li, Zhendong Guo, and Sung-Liang Chen. "Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution." Optics Express 25, no. 2 (January 18, 2017): 1421. http://dx.doi.org/10.1364/oe.25.001421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lue, Niyom, Wonshik Choi, Gabriel Popescu, Kamran Badizadegan, Ramachandra R. Dasari, and Michael S. Feld. "Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion." Optics Express 16, no. 20 (September 26, 2008): 16240. http://dx.doi.org/10.1364/oe.16.016240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Shaohui, Guocheng Zhou, Ying Wang, Yao Hu, and Qun Hao. "A Simply Equipped Fourier Ptychography Platform Based on an Industrial Camera and Telecentric Objective." Sensors 19, no. 22 (November 11, 2019): 4913. http://dx.doi.org/10.3390/s19224913.

Full text
Abstract:
Fourier ptychography microscopy (FPM) is a recently emerged computational imaging method, which combines the advantages of synthetic aperture and phase retrieval to achieve super-resolution microscopic imaging. FPM can bypass the diffraction limit of the numerical aperture (NA) system and achieve complex images with wide field of view and high resolution (HR) on the basis of the existing microscopic platform, which has low resolution and wide field of view. Conventional FPM platforms are constructed based on basic microscopic platform and a scientific complementary metal–oxide–semiconductor (sCMOS) camera, which has ultrahigh dynamic range. However, sCMOS, or even the microscopic platform, is too expensive to afford for some researchers. Furthermore, the fixed microscopic platform limits the space for function expansion and system modification. In this work, we present a simply equipped FPM platform based on an industrial camera and telecentric objective, which is much cheaper than sCMOS camera and microscopic platform and has accurate optical calibration. A corresponding algorithm was embedded into a conventional FP framework to overcome the low dynamic range of industrial cameras. Simulation and experimental results showed the feasibility and good performance of the designed FPM platform and algorithms.
APA, Harvard, Vancouver, ISO, and other styles
49

Yi, Luying, Liqun Sun, Xiangyu Guo, and Bo Hou. "Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy." Applied Sciences 9, no. 19 (September 25, 2019): 4003. http://dx.doi.org/10.3390/app9194003.

Full text
Abstract:
Combining the advantages of compressive sensing spectral domain optical coherence tomography (CS-SDOCT) and interferometric synthetic aperture microscopy (ISAM) in terms of data volume, imaging speed, and lateral resolution, we demonstrated how compressive sampling and ISAM can be simultaneously used to reconstruct an optical coherence tomography (OCT) image. Specifically, an OCT image is reconstructed from two-dimensional (2D) under-sampled spectral data dimension-by-dimension through a CS reconstruction algorithm. During the iterative process of CS algorithm, the deterioration of lateral resolution beyond the depth of focus (DOF) of a Gaussian beam is corrected. In the end, with less spectral data, we can obtain an OCT image with spatially invariant lateral resolution throughout the imaging depth. This method was verified in this paper by imaging the cells of an orange. A 0.7 × 1.5 mm image of an orange was reconstructed using only 50% × 50% spectral data, in which the dispersion of the structure was decreased by approximately 2.4 times at a depth of approximately 5.7 Rayleigh ranges above the focus. This result was consistent with that obtained with 100% data.
APA, Harvard, Vancouver, ISO, and other styles
50

Lin, Yu-Chih, Han-Yen Tu, Xin-Ru Wu, Xin-Ji Lai, and Chau-Jern Cheng. "One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating." Optics Express 26, no. 10 (May 2, 2018): 12620. http://dx.doi.org/10.1364/oe.26.012620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography