Journal articles on the topic 'Synthesis in molten salts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Synthesis in molten salts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yang, Rui Song, Li Shan Cui, Yan Jun Zheng, and Jin Long Zhao. "Synthesis of TiNi Particles in High Temperature Molten Salts." Materials Science Forum 475-479 (January 2005): 1941–44. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1941.
Full textZhang, Jin Hua, Si Xiong, Chang Ming Ke, Hong Dan Wu, and Xin Rong Lei. "Synthesis and Reaction Mechanism of Ti3SiC2 by Molten Salt Method from Ti-Si-Fe Alloy." Key Engineering Materials 768 (April 2018): 159–66. http://dx.doi.org/10.4028/www.scientific.net/kem.768.159.
Full textGrabis, Jānis, Gundega Heidemane, and Aija Krūmiņa. "Synthesis of NiO Nanoparticles by Microwave Assisted and Molten Salts Methods." Key Engineering Materials 721 (December 2016): 71–75. http://dx.doi.org/10.4028/www.scientific.net/kem.721.71.
Full textYolshina, V. A., and L. A. Yolshina. "Electrochemical Synthesis of Graphene in Molten Salts." Russian Metallurgy (Metally) 2021, no. 2 (February 2021): 206–12. http://dx.doi.org/10.1134/s0036029521020051.
Full textKuznetsov, S. A. "Electrochemical Synthesis of Nanomaterials in Molten Salts." Journal of The Electrochemical Society 164, no. 8 (2017): H5145—H5149. http://dx.doi.org/10.1149/2.0261708jes.
Full textKuznetsov, S. A. "Electrochemical Synthesis of Nanomaterials in Molten Salts." ECS Transactions 75, no. 15 (September 23, 2016): 333–39. http://dx.doi.org/10.1149/07515.0333ecst.
Full textYang, Jiarong, Wei Weng, and Wei Xiao. "Electrochemical synthesis of ammonia in molten salts." Journal of Energy Chemistry 43 (April 2020): 195–207. http://dx.doi.org/10.1016/j.jechem.2019.09.006.
Full textDevyatkin, S. V., O. I. Boiko, N. N. Uskova, and G. Kaptay. "Electrochemical Synthesis of Titanium Silicides from Molten Salts." Zeitschrift für Naturforschung A 56, no. 11 (November 1, 2001): 739–40. http://dx.doi.org/10.1515/zna-2001-1107.
Full textWang, Wei, Gui Wu Liu, Guan Jun Qiao, Jian Feng Yang, Hong Wei Li, and Ya Jie Guo. "Molten Salt Synthesis of Mullite Whiskers from Silicon Carbide Precursor." Materials Science Forum 724 (June 2012): 299–302. http://dx.doi.org/10.4028/www.scientific.net/msf.724.299.
Full textZhao, Shi Xi, Qiang Li, Feng Bing Song, Chun Hong Li, and De Zhong Shen. "Molten Salts Synthesis of Relaxor Ferroelectrics PMN-PT Powders." Key Engineering Materials 336-338 (April 2007): 10–13. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.10.
Full textLi, Hui, Jing Long Liang, and Yun Gang Li. "Studies on Synthesis Mechanism of Fe-Si Alloy." Advanced Materials Research 886 (January 2014): 20–23. http://dx.doi.org/10.4028/www.scientific.net/amr.886.20.
Full textDENG, YIQUN, and BIN YANG. "PREPARATION OF 3 MOL.% YTTRIA-FULLY-STABILIZED ZIRCONIA NANOPOWDERS BY MOLTEN SALTS/COPRECIPITATION METHOD AT LOW TEMPERATURE." Nano 08, no. 02 (April 2013): 1350015. http://dx.doi.org/10.1142/s179329201350015x.
Full textYang, Ruisong, Lishan Cui, and Yanjun Zheng. "The Synthesis of Composite Particles in Molten Salts." MATERIALS TRANSACTIONS 47, no. 3 (2006): 584–86. http://dx.doi.org/10.2320/matertrans.47.584.
Full textBUKATOVA, Galina A., and Sergey A. KUZNETSOV. "Electrochemical Synthesis of Neodymium Borides in Molten Salts." Electrochemistry 73, no. 8 (August 5, 2005): 627–29. http://dx.doi.org/10.5796/electrochemistry.73.627.
Full textShavel, A., L. Guerrini, and R. A. Alvarez-Puebla. "Colloidal synthesis of silicon nanoparticles in molten salts." Nanoscale 9, no. 24 (2017): 8157–63. http://dx.doi.org/10.1039/c7nr01839h.
Full textLi, Zushu, William Edward Lee, and Shaowei Zhang. "Low-Temperature Synthesis of CaZrO3Powder from Molten Salts." Journal of the American Ceramic Society 90, no. 2 (February 2007): 364–68. http://dx.doi.org/10.1111/j.1551-2916.2006.01383.x.
Full textYoshii, Kenji, and Hideki Abe. "Electrochemical synthesis of superconductive MgB2 from molten salts." Physica C: Superconductivity 388-389 (May 2003): 113–14. http://dx.doi.org/10.1016/s0921-4534(02)02674-6.
Full textKaptay, G., and S. A. Kuznetsov. "Electrochemical synthesis of refractory borides from molten salts." Plasmas & Ions 2, no. 2 (January 1999): 45–56. http://dx.doi.org/10.1016/s1288-3255(00)87686-8.
Full textAbdelkader, Amr M. "Molten salts electrochemical synthesis of Cr 2 AlC." Journal of the European Ceramic Society 36, no. 1 (January 2016): 33–42. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.09.003.
Full textAbdelkader, Amr M. "Electrochemical synthesis of highly corrugated graphene sheets for high performance supercapacitors." Journal of Materials Chemistry A 3, no. 16 (2015): 8519–25. http://dx.doi.org/10.1039/c5ta00545k.
Full textIto, Y., and T. Nishikiori. "Novel electrochemical reactions related to electrodeposition and electrochemical synthesis." Journal of Mining and Metallurgy, Section B: Metallurgy 39, no. 1-2 (2003): 233–49. http://dx.doi.org/10.2298/jmmb0302233i.
Full textCahen, S., I. El-Hajj, L. Speyer, P. Berger, G. Medjahdi, P. Lagrange, G. Lamura, and C. Hérold. "Original synthesis route of bulk binary superconducting graphite intercalation compounds with strontium, barium and ytterbium." New Journal of Chemistry 44, no. 24 (2020): 10050–55. http://dx.doi.org/10.1039/c9nj06423k.
Full textPornpatdetaudom, Thanataon, and Karn Serivalsatit. "Effect of Molten Salts on Synthesis and Upconversion Luminescence of Ytterbium and Thulium-Doped Alkaline Yttrium Fluorides." Key Engineering Materials 766 (April 2018): 34–39. http://dx.doi.org/10.4028/www.scientific.net/kem.766.34.
Full textNithyadharseni, P., M. V. Reddy, Ho Fanny, S. Adams, and B. V. R. Chowdari. "Facile one pot synthesis and Li-cycling properties of MnO2." RSC Advances 5, no. 74 (2015): 60552–61. http://dx.doi.org/10.1039/c5ra09278g.
Full textZhang, Quan, Guo Feng, Feng Jiang, Jianmin Liu, Lifeng Miao, Qian Wu, Tao Wang, and Weihui Jiang. "Facile preparation of ZrO2 whiskers by LiF-KCl molten salts synthesis." Processing and Application of Ceramics 15, no. 3 (2021): 219–25. http://dx.doi.org/10.2298/pac2103219z.
Full textKumar, Ram, Mounib Bahri, Yang Song, Francisco Gonell, Cyril Thomas, Ovidiu Ersen, Clément Sanchez, Christel Laberty-Robert, and David Portehault. "Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction." Nanoscale 12, no. 28 (2020): 15209–13. http://dx.doi.org/10.1039/d0nr04284f.
Full textTANG, XIAOPING, YANFENG GAO, HONGFEI CHEN, and HONGJIE LUO. "MOLTEN SALT ASSISTED SYNTHESIS OF LUTETIUM SILICATE NANOPARTICLES." Functional Materials Letters 04, no. 03 (September 2011): 277–82. http://dx.doi.org/10.1142/s1793604711001920.
Full textGryaznov, Artem N., Daniil S. Slesarev, and V. Sergeevich Dolmatov. "Currentless production of chromium carbides on carbon fibers in NaCl-KCl-CrCl3-Cr melt." Transactions of the Kоla Science Centre of RAS. Series: Engineering Sciences 14, no. 5/2023 (December 20, 2023): 29–32. http://dx.doi.org/10.37614/2949-1215.2023.14.5.005.
Full textLiu, Siliang, Jingsan Xu, Jixin Zhu, Yuanqin Chang, Haige Wang, Zhichong Liu, Yang Xu, Chao Zhang, and Tianxi Liu. "Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities." Journal of Materials Chemistry A 5, no. 37 (2017): 19997–20004. http://dx.doi.org/10.1039/c7ta04952h.
Full textNovoselova, Inessa, Serhii Kuleshov, and Anatoliy Omel'chuk. "Electrolytical Carbon Nanostructures from Molten Salts: Synthesis and Properties." ECS Meeting Abstracts MA2021-02, no. 6 (October 19, 2021): 539. http://dx.doi.org/10.1149/ma2021-026539mtgabs.
Full textKuznetsov, Sergey A., and Svetlana V. Kuznetsova. "Electrochemical Synthesis of Niobium-Hafnium Coatings in Molten Salts." Zeitschrift für Naturforschung A 62, no. 7-8 (August 1, 2007): 425–30. http://dx.doi.org/10.1515/zna-2007-7-812.
Full textAbe, Hideki, and Kenji Yoshii. "Electrochemical Synthesis of Superconductive Boride MgB2 from Molten Salts." Japanese Journal of Applied Physics 41, Part 2, No. 6B (June 15, 2002): L685—L687. http://dx.doi.org/10.1143/jjap.41.l685.
Full textKuznetsov, S. A., V. V. Grinevich, A. V. Arakcheeva, and V. T. Kalinnikov. "Electrochemical synthesis of tantalum monoxide nanoneedles in molten salts." Doklady Chemistry 428, no. 1 (September 2009): 218–21. http://dx.doi.org/10.1134/s0012500809090043.
Full textChoo, Hyun-Suk, Kwan-Young Lee, Yun-Sung Kim, and Jung-Ho Wee. "Synthesis of Ni3Al intermetallic powder in eutectic molten salts." Intermetallics 13, no. 2 (February 2005): 157–62. http://dx.doi.org/10.1016/j.intermet.2004.07.042.
Full textKim, Hyun, and Byeongnam Jo. "Anomalous Increase in Specific Heat of Binary Molten Salt-Based Graphite Nanofluids for Thermal Energy Storage." Applied Sciences 8, no. 8 (August 5, 2018): 1305. http://dx.doi.org/10.3390/app8081305.
Full textZhang, Liyuan, Mengran Wang, Yuekun Lai, and Xiaoyan Li. "Oil/molten salt interfacial synthesis of hybrid thin carbon nanostructures and their composites." Journal of Materials Chemistry A 6, no. 12 (2018): 4988–96. http://dx.doi.org/10.1039/c7ta10692k.
Full textWang, Xue Ying, Yong Ping Zhu, and Wei Gang Zhang. "Preparation of La2Ce2O7 Nano-Powders by Molten Salts Method." Advanced Materials Research 79-82 (August 2009): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.337.
Full textZhang, Kechen, Changxin Liu, Qiang Liu, Zheyang Mo, and Dawei Zhang. "Salt-Mediated Structural Transformation in Carbon Nitride: From Regulated Atomic Configurations to Enhanced Photocatalysis." Catalysts 13, no. 4 (April 10, 2023): 717. http://dx.doi.org/10.3390/catal13040717.
Full textAngappan, S., N. Kalaiselvi, R. Sudha, and A. Visuvasam. "Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique." International Scholarly Research Notices 2014 (August 31, 2014): 1–6. http://dx.doi.org/10.1155/2014/123194.
Full textLi, Xiaoqiao, Linming Zhou, Han Wang, Dechao Meng, Guannan Qian, Yong Wang, Yushi He, et al. "Dopants modulate crystal growth in molten salts enabled by surface energy tuning." Journal of Materials Chemistry A 9, no. 35 (2021): 19675–80. http://dx.doi.org/10.1039/d1ta02351a.
Full textAndal, V., G. Buvaneswari, and R. Lakshmipathy. "Synthesis of CuAl2O4 Nanoparticle and Its Conversion to CuO Nanorods." Journal of Nanomaterials 2021 (September 6, 2021): 1–7. http://dx.doi.org/10.1155/2021/8082522.
Full textZhao, Shi Xi, Qiang Li, and Feng Bing Song. "Molten Salts Synthesis and Dielectric Properties of PMN-PT Ceramics." Materials Science Forum 475-479 (January 2005): 1153–56. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1153.
Full textAlShehri, Saad M., Jahangeer Ahmed, Tansir Ahamad, Prabhakarn Arunachalam, Tokeer Ahmad, and Aslam Khan. "Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)." RSC Adv. 7, no. 72 (2017): 45615–23. http://dx.doi.org/10.1039/c7ra07256b.
Full textMurakami, Tsuyoshi, Tokujiro Nishikiori, Toshiyuki Nohira, and Yasuhiko Ito. "Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure." Journal of the American Chemical Society 125, no. 2 (January 2003): 334–35. http://dx.doi.org/10.1021/ja028891t.
Full textFuentes, L., M. GarcÍa, D. Bueno, M. E. Fuentes, and A. Muñoz. "Magnetoelectric Effect in Bi5Ti3FeO15 Ceramics Obtained by Molten Salts Synthesis." Ferroelectrics 336, no. 1 (July 2006): 81–89. http://dx.doi.org/10.1080/00150190600695883.
Full textZhao, Jinlong, Lishan Cui, Wanfu Gao, and Yanjun Zheng. "Synthesis of NiTi particles by chemical reaction in molten salts." Intermetallics 13, no. 3-4 (March 2005): 301–3. http://dx.doi.org/10.1016/j.intermet.2004.07.023.
Full textBurke, Sven Anders, and Jay Whitacre. "Molten Salt Synthesis of High-Performance Cobalt Free Lithium Excess Cathodes." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 293. http://dx.doi.org/10.1149/ma2022-023293mtgabs.
Full textSaadi, L., R. Moussa, A. Samdi, and A. Mosset. "Synthesis of mullite precursors in molten salts. Influence of the molten alkali nitrate and additives." Journal of the European Ceramic Society 19, no. 4 (April 1999): 517–20. http://dx.doi.org/10.1016/s0955-2219(98)00220-9.
Full textZhang, Haoran, Mengshuo Li, Ze Zhou, Liming Shen, and Ningzhong Bao. "Microstructure and Morphology Control of Potassium Magnesium Titanates and Sodium Iron Titanates by Molten Salt Synthesis." Materials 12, no. 10 (May 14, 2019): 1577. http://dx.doi.org/10.3390/ma12101577.
Full textInagaki, Michio, and Zheng-De Wang. "Synthesis of Graphite Intercalation Compounds in Molten Salts of Metal Chlorides." TANSO 1992, no. 153 (1992): 184–96. http://dx.doi.org/10.7209/tanso.1992.184.
Full text