Academic literature on the topic 'SYNTHESIS, BIOMATERIAL, PEPTIDE, CARBOHYDRATE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SYNTHESIS, BIOMATERIAL, PEPTIDE, CARBOHYDRATE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SYNTHESIS, BIOMATERIAL, PEPTIDE, CARBOHYDRATE"
Wartchow, Charles A., Peng Wang, Mark D. Bednarski, and Matthew R. Callstrom. "Carbohydrate Protease Conjugates: Stabilized Proteases for Peptide Synthesis." Journal of Organic Chemistry 60, no. 7 (April 1995): 2216–26. http://dx.doi.org/10.1021/jo00112a049.
Full textHossain, Farzana, Shruthi Kandalai, Xiaozhuang Zhou, Nan Zhang, and Qingfei Zheng. "Chemical and Synthetic Biology Approaches for Cancer Vaccine Development." Molecules 27, no. 20 (October 16, 2022): 6933. http://dx.doi.org/10.3390/molecules27206933.
Full textHerzner, Holger, Tanja Reipen, Michael Schultz, and Horst Kunz. "Synthesis of Glycopeptides Containing Carbohydrate and Peptide Recognition Motifs." Chemical Reviews 100, no. 12 (December 2000): 4495–538. http://dx.doi.org/10.1021/cr990308c.
Full textBadhe, Ravindra, Pradeep Kumar, Yahya Choonara, Thashree Marimuthu, Lisa du Toit, Divya Bijukumar, Dharmesh Chejara, Mostafa Mabrouk, and Viness Pillay. "Customized Peptide Biomaterial Synthesis via an Environment-Reliant Auto-Programmer Stigmergic Approach." Materials 11, no. 4 (April 16, 2018): 609. http://dx.doi.org/10.3390/ma11040609.
Full textBini, Davide, Laura Russo, Chiara Battocchio, Antonino Natalello, Giovanni Polzonetti, Silvia Maria Doglia, Francesco Nicotra, and Laura Cipolla. "Dendron Synthesis and Carbohydrate Immobilization on a Biomaterial Surface by a Double-Click Reaction." Organic Letters 16, no. 5 (February 19, 2014): 1298–301. http://dx.doi.org/10.1021/ol403476z.
Full textRacheva, M., O. Romero, K. K. Julich-Gruner, A. S. Ulrich, C. Wischke, and A. Lendlein. "Purity of mushroom tyrosinase as a biocatalyst for biomaterial synthesis affects the stability of therapeutic peptides." MRS Proceedings 1718 (2015): 85–90. http://dx.doi.org/10.1557/opl.2015.260.
Full textHerzner, Holger, Tanja Reipen, Michael Schultz, and Horst Kunz. "ChemInform Abstract: Synthesis of Glycopeptides Containing Carbohydrate and Peptide Recognition Motifs." ChemInform 32, no. 9 (February 27, 2001): no. http://dx.doi.org/10.1002/chin.200109270.
Full textFernandes, Rafaella F., Giordano T. Paganoto, and Marcia L. A. Temperini. "Non-traditional intrinsic luminescence from non-conjugated polymer dots: designing a hybrid biomaterial." Polymer Chemistry 12, no. 43 (2021): 6319–28. http://dx.doi.org/10.1039/d1py01104a.
Full textWu, Fang-Yi, and Hsin-Chieh Lin. "Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles." Molecules 27, no. 13 (June 27, 2022): 4115. http://dx.doi.org/10.3390/molecules27134115.
Full textZhong, Wei, Mariusz Skwarczynski, Yoshio Fujita, Pavla Simerska, Michael F. Good, and Istvan Toth. "Design and Synthesis of Lipopeptide - Carbohydrate Assembled Multivalent Vaccine Candidates Using Native Chemical Ligation." Australian Journal of Chemistry 62, no. 9 (2009): 993. http://dx.doi.org/10.1071/ch09065.
Full textDissertations / Theses on the topic "SYNTHESIS, BIOMATERIAL, PEPTIDE, CARBOHYDRATE"
SHAIKH, NASRIN ISMAIL. ""Design and synthesis of relevant biomolecules for functionalization of biomaterial in tissue engineering"." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19453.
Full textWartchow, Charles Aaron. "Carbohydrate protease conjugates (CPC) : stabilized proteases for peptide synthesis /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847309050511.
Full textGABRIELLI, LUCA. "Glycomimetics: design, synthesis and biological activity studies." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41953.
Full textVartak, Abhishek R. "Synthesis and Evaluation of Multi-component Immuno-therapeutics Containing Peptide and Carbohydrate-based Antigens." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1560356357892348.
Full textVoglmeir, Josef. "Expression of Peptide- and Glycopeptide Modifying Glycosyltransferases for Applications in Liquid- and Solid Phase Carbohydrate Synthesis." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508597.
Full textJiménez-Castells, Carmen 1982. "Capture and identification of carbohydrate-binding proteins by SPR and CREDEX-MS." Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7237.
Full textLas lectinas (proteínas de origen no inmune capaces de reconocer azúcares) se han revelado en las últimas décadas como participantes cruciales en multitud de procesos biológicos, tales como la comunicación célula-célula, la fertilización, la adhesión del patógeno a la célula y la metástasis, entre muchos otros. Por lo tanto, existe un gran interés en el desarrollo de técnicas analíticas potentes para el estudio de las interacciones lectina-carbohidrato. En este trabajo, se describen dos aproximaciones complementarias mediante las cuales se pueden caracterizar las interacciones lectinas-azúcar con gran sensibilidad, poca utilización de muestra y sin la necesitad de ningún marcaje. En la técnica basada en resonancia de plasmón superficial (SPR), el azúcar es inmovilizado sobre una superficie a través de un módulo peptídico, lo cual permite (1) capturar la lectina, (2) caracterizar su interacción mediante parámetros cinéticos y termodinámicos y (3) identificar posteriormente la proteína mediante espectrometría de masas. Complementariamente, la técnica CREDEX-MS, basada en la excisión proteolítica del complejo proteína-azúcar y posterior análisis por espectrometría de masas, nos permite identificar los péptidos que forman parte del dominio de unión al azúcar.
Huang, Shun-Chiang, and 黃舜強. "Synthesis and analysis of self-assembly peptide supramolecular hydrogel biomaterial conjugated with gold nanoparticles." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/34199658716970636965.
Full text國立交通大學
材料科學與工程學系奈米科技碩博士班
101
Recently, development of hydrogel nanocomposites offered tremendous scope for future biomaterial applications, including bioanalysis, chemical sensing, and drug delivery. Smart combinations of different nanostructured materials supported the development of multifunctional nanomaterials. In this study, synthesizing self-assembly peptide supramolecular hydrogel 2-Naphthylacetic acid- L-Phenylalanine- L-Phenylalanine- L-Cysteine (NapFFC) has been done and conjugated with gold nanoparticles (AuNPs) as a new and potential composite material. Finding stimuli-response properties for critical hydrogelation conditions such as concentration, pH, ionic strength, temperature, and incubation time were defined by visual. Further discussion for protection ability resulted from interaction between NapFFC and AuNPs was analyzed, and the results showed hydrogel and nanoparticles were complementary materials. Fibrous network and various kinds of helix structure resulted from self-assembly molecule blocks was observed and analyzed. Fluorescence intensity emitted at 335 nm was also helpful to obtain concentration of NapFFC under 60 μM within which self-quenching didn’t occur. Utilizing fluorescence quenching effect of AuNPs was quite sensitive and precise to measure the accurate amounts of molecules bound to the surface of AuNPs. This method was also used to detect quenching effectiveness of mercury ions in this study. Moreover, cell viability showed good biocompatibility. These analysis and results of composite material were attractive feature for exploitation in the field of biomaterials.
Book chapters on the topic "SYNTHESIS, BIOMATERIAL, PEPTIDE, CARBOHYDRATE"
Kihlberg, Jan, Mikael Elofsson, and Lourdes A. Salvador. "[11] Direct synthesis of glycosylated amino acids from carbohydrate peracetates and Fmoc amino acids: Solid-phase synthesis of biomedicinally interesting glycopeptides." In Solid-Phase Peptide Synthesis, 221–45. Elsevier, 1997. http://dx.doi.org/10.1016/s0076-6879(97)89050-7.
Full textFields, Gregg B., and Janelle L. Lauer-Fields. "Principles and Practice of Solid-Phase Peptide Synthesis." In Synthetic Peptides. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195132618.003.0006.
Full textConference papers on the topic "SYNTHESIS, BIOMATERIAL, PEPTIDE, CARBOHYDRATE"
Ajisaka, Katsumi, Chikako Ito, and Syuichi Oka. "CHEMOENZYMATIC SYNTHESIS OF SIALYL T-ANTIGEN-LINKED PENTADECA-PEPTIDE AND ITS CHARACTERIZATION." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.423.
Full textKajimoto, Tetsuya, Toru Tanaka, Chihiro Tsuda, Tsuyoshi Miura, Toshiyuki Inazu, and Shuichi Tsuji. "SYNTHESIS OF PEPTIDE MIMICS OF SUGAR NUCLEOTIDES AS THE INHIBITORS OF GLYCOSYLTRANSFERASES." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.599.
Full text