Academic literature on the topic 'Symplectic groupoids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symplectic groupoids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Symplectic groupoids"
MACKENZIE, K. C. H. "ON SYMPLECTIC DOUBLE GROUPOIDS AND THE DUALITY OF POISSON GROUPOIDS." International Journal of Mathematics 10, no. 04 (June 1999): 435–56. http://dx.doi.org/10.1142/s0129167x99000185.
Full textCattaneo, Alberto S., Benoit Dherin, and Giovanni Felder. "Formal Lagrangian Operad." International Journal of Mathematics and Mathematical Sciences 2010 (2010): 1–36. http://dx.doi.org/10.1155/2010/643605.
Full textXU, PING. "ON POISSON GROUPOIDS." International Journal of Mathematics 06, no. 01 (February 1995): 101–24. http://dx.doi.org/10.1142/s0129167x95000080.
Full textŠevera, Pavol, and Michal Širaň. "Integration of Differential Graded Manifolds." International Mathematics Research Notices 2020, no. 20 (February 15, 2019): 6769–814. http://dx.doi.org/10.1093/imrn/rnz004.
Full textCattaneo, Alberto S., and Ivan Contreras. "Relational Symplectic Groupoids." Letters in Mathematical Physics 105, no. 5 (April 22, 2015): 723–67. http://dx.doi.org/10.1007/s11005-015-0760-3.
Full textGualtieri, Marco, and Songhao Li. "Symplectic Groupoids of Log Symplectic Manifolds." International Mathematics Research Notices 2014, no. 11 (March 1, 2013): 3022–74. http://dx.doi.org/10.1093/imrn/rnt024.
Full textMehta, Rajan Amit, and Xiang Tang. "Constant symplectic 2-groupoids." Letters in Mathematical Physics 108, no. 5 (November 15, 2017): 1203–23. http://dx.doi.org/10.1007/s11005-017-1026-z.
Full text戴, 远莉. "Symplectic Reduction for Cotangent Groupoids." Pure Mathematics 11, no. 03 (2021): 323–29. http://dx.doi.org/10.12677/pm.2021.113043.
Full textWeinstein, Alan. "Symplectic groupoids and Poisson manifolds." Bulletin of the American Mathematical Society 16, no. 1 (January 1, 1987): 101–5. http://dx.doi.org/10.1090/s0273-0979-1987-15473-5.
Full textLi, Songhao, and Dylan Rupel. "Symplectic groupoids for cluster manifolds." Journal of Geometry and Physics 154 (August 2020): 103688. http://dx.doi.org/10.1016/j.geomphys.2020.103688.
Full textDissertations / Theses on the topic "Symplectic groupoids"
Cosserat, Oscar. "Theory and Construction of Structure Preserving Integrators in Poisson Geometry." Electronic Thesis or Diss., La Rochelle, 2023. http://www.theses.fr/2023LAROS018.
Full textWe introduce for any Poisson structure on a manifold the notion of bi-realisation and illustrate it by examples. We define Hamiltonian Poisson integrators as Poisson integrators for which discrete trajectory follows the flow of a time-dependent Hamiltonian. Next, a construction of a Hamiltonian Poisson integrator for generic Poisson structure, Hamiltonian H, order k and time-step t are given via any truncation at order k of the Hamilton-Jacobi transform S¬t(H) of the Hamiltonian H on a bi-realisation of the Poisson structure. We also define the Farmer sequence and we explain how it gives explicit recursive formulae to solve Hamilton-Jacobi equation at an arbitrary order. We explain how local symplectic groupoids provide a geometric interpretation of the notion of bi-realisation. We define for any time-dependent Hamiltonian H its Magnus series to construct, for any Hamiltonian Poisson integrator, a modified Hamiltonian. To conclude, we compare our integrators with Runge-Kutta methods on the example of rigid body dynamics and Lotka-Volterra differential equations, in particular on long run simulations. In Dirac geometry, we introduce the canonical horizontal 2-cocycle of a Dirac structure. Under the sufficiency condition of its exactness, we exhibit for any Hamiltonian H a functional for which critical points are exactly integral curves of Hamiltonian vector fields of H. We also deduce from the previous result a generalisation of the Legendre transform to Dirac structures
Li, Travis Songhao. "Constructions of Lie Groupoids." Thesis, 2013. http://hdl.handle.net/1807/43638.
Full textBooks on the topic "Symplectic groupoids"
Dazord, Pierre, and Alan Weinstein, eds. Symplectic Geometry, Groupoids, and Integrable Systems. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9.
Full textSéminaire, sud-rhodanien de géométrie (6th 1989 Berkeley Calif ). Symplectic geometry, groupoids, and integrable systems. New York: Springer-Verlag, 1991.
Find full textSéminaire Sud-Rhodanien de Géométrie (6th 1989 Berkeley, Calif.). Symplectic geometry, groupoids, and integrable systems: Séminaire Sud Rhodanien de Géométrie à Berkeley (1989). Edited by Dazord P and Weinstein Alan. New York: Springer-Verlag, 1991.
Find full text1963-, Shapiro Michael, and Vainshtein Alek 1958-, eds. Cluster algebra and Poisson geometry. Providence, R.I: American Mathematical Society, 2010.
Find full text(Editor), Pierre Dazord, and Alan Weinstein (Editor), eds. Symplectic Geometry, Groupoids, and Integrable Systems: Seminaire Sud Rhodanien de Geometrie a Berkeley (1989) (Mathematical Sciences Research Institute Publications). Springer, 1991.
Find full textWeinstein, Alan, and Pierre Dazord. Symplectic Geometry, Groupoids, and Integrable Systems: Séminaire Sud Rhodanien de Géométrie à Berkeley. Springer, 2012.
Find full textWeinstein, Alan, and Pierre Dazord. Symplectic Geometry, Groupoids, and Integrable Systems: Séminaire Sud Rhodanien de Géométrie à Berkeley. Springer, 2012.
Find full textLectures on Poisson Geometry. American Mathematical Society, 2021.
Find full textLectures on Poisson Geometry. American Mathematical Society, 2021.
Find full textBook chapters on the topic "Symplectic groupoids"
Xu, Ping. "Morita Equivalent Symplectic Groupoids." In Mathematical Sciences Research Institute Publications, 291–311. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9_20.
Full textCattaneo, Alberto S., and Giovanni Felder. "Poisson sigma models and symplectic groupoids." In Quantization of Singular Symplectic Quotients, 61–93. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8364-1_4.
Full textVaisman, Izu. "Realizations of Poisson Manifolds by Symplectic Groupoids." In Lectures on the Geometry of Poisson Manifolds, 135–59. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8495-2_10.
Full textWeinstein, Alan. "Symplectic Groupoids, Geometric Quantization, and Irrational Rotation Algebras." In Mathematical Sciences Research Institute Publications, 281–90. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9_19.
Full textLauter, Robert, and Victor Nistor. "Analysis of geometric operators on open manifolds: A groupoid approach." In Quantization of Singular Symplectic Quotients, 181–229. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8364-1_8.
Full text"Symplectic groupoids." In Lectures on Poisson Geometry, 361–418. Providence, Rhode Island: American Mathematical Society, 2021. http://dx.doi.org/10.1090/gsm/217/17.
Full textMarle, C. M. "Lie, Symplectic, and Poisson Groupoids and Their Lie Algebroids." In Encyclopedia of Mathematical Physics, 312–20. Elsevier, 2006. http://dx.doi.org/10.1016/b0-12-512666-2/00145-0.
Full text"Poisson and Symplecfie Groupoids." In General Theory of Lie Groupoids and Lie Algebroids, 408–45. Cambridge University Press, 2005. http://dx.doi.org/10.1017/cbo9781107325883.015.
Full textConference papers on the topic "Symplectic groupoids"
Mackenzie, Kirill. "FROM SYMPLECTIC GROUPOIDS TO DOUBLE STRUCTURES." In Villa de Leyva Summer School. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814730884_0005.
Full textBonechi, Francesco, Nicola Ciccoli, and Marco Tarlini. "Quantization of the symplectic groupoid." In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0060.
Full text