Dissertations / Theses on the topic 'Symplectic bundles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Symplectic bundles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
at, Andreas Cap@esi ac. "Equivariant Symplectic Geometry of Cotangent Bundles." Moscow Math. J. 1, No.2 (2001) 287-299, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi996.ps.
Full textHitching, George H. "Moduli of symplectic bundles over curves." Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2351/.
Full textHenriksen, Tobias Våge. "Symplectic Homology and Shape of Cotangent Bundles." Thesis, Uppsala universitet, Algebra och geometri, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-451813.
Full textPlummer, Michael. "Stratified fibre bundles and symplectic reduction on coadjoint orbits of SU(n)." Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/842671/.
Full textKirchhoff-Lukat, Charlotte Sophie. "Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283007.
Full textChoy, Jaeyoo. "Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/198873.
Full textKarlsson, Cecilia. "Orienting Moduli Spaces of Flow Trees for Symplectic Field Theory." Doctoral thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269551.
Full textMonzner, Alexandra [Verfasser], Karl Friedrich [Akademischer Betreuer] Siburg, and Lorenz Johannes [Akademischer Betreuer] Schwachhöfer. "Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles / Alexandra Monzner. Betreuer: Karl Friedrich Siburg. Gutachter: Lorenz Johannes Schwachhöfer." Dortmund : Universitätsbibliothek Dortmund, 2012. http://d-nb.info/1099912598/34.
Full textMOSSA, ROBERTO. "Balanced metrics on complex vector bundles and the diastatic exponential of a symmetric space." Doctoral thesis, Università degli Studi di Cagliari, 2011. http://hdl.handle.net/11584/266274.
Full textKennedy, Chris A. "Construction of Maps by Postnikov Towers." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.
Full textBranco, Lucas Magalhães Pereira Castello 1988. "Mapas momento em teoria de calibre." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306010.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-22T22:29:57Z (GMT). No. of bitstreams: 1 Branco_LucasMagalhaesPereiraCastello_M.pdf: 1981391 bytes, checksum: 7ecd7674514f634b8bb527c0bcab1a06 (MD5) Previous issue date: 2013
Resumo: Neste trabalho os aspectos básicos da teoria de calibre são abordados, incluindo as noções de conexão e curvatura em fibrados principais e vetoriais, considerações sobre o grupo de transformações de calibre e o espaço de moduli de soluções para a equação anti-auto-dual em dimensão quatro (o espaço de moduli de instantons). Posteriormente, mapas momento e redução são introduzidos. Primeiramente, no contexto clássico de geometria simplética e depois no contexto de geometria hyperkähler. Por fim, são apresentadas aplicações da teoria de mapas momento e redução em teoria de calibre. As equações ADHM são introduzidas e mostra se que estas podem ser dadas como o conjunto de zeros de um mapa momento hyperkähler. Além disso, considerações são feitas acerca da construção ADHM de instantons, que relaciona soluções dessas equações com as soluções da equação de anti-auto-dualidade. O espaço de moduli de conexões planas é também abordado. Neste caso, a curvatura é vista como um mapa momento e os cálculos podem ser generalizados para o espaço de moduli de conexões planas sobre variedades Kähler de dimensões mais altas e para o espaço de moduli de instantons sobre variedades hyperkähler de dimensão quatro
Abstract: In this work it is developed the basic concepts of gauge theory, including the notions of connections and curvature on principal bundles and vector bundles, considerations on the group of gauge transformations and the moduli space of anti-self-dual connections in dimension four (the instanton moduli space). After, moment maps and reduction are introduced. First in the classical context of symplectic geometry, then in hyperkähler geometry. At last, applications to the theory of moment maps and reduction in gauge theory are given. The ADHM equations are introduced and it is shown that solutions to these equations can be given by the zeros of a hyperkähler moment map. Furthermore, the ADHM construction, that relates the ADHM equations to instanton solutions, is discussed. The moduli space of flat connections over a Riemann surface is also treated. In this case, the curvature is seen as a moment map and the calculations can be generalized to flat connections over higher-dimensional Kähler manifolds and to the instanton moduli space over four dimensional hyperkähler manifolds
Mestrado
Matematica
Mestre em Matemática
Hedlund, William. "Geometric Quantization." Thesis, Uppsala universitet, Teoretisk fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325649.
Full textFedosov, Boris. "Moduli spaces and deformation quantization in infinite dimensions." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2539/.
Full textBauer, David. "Towards Discretization by Piecewise Pseudoholomorphic Curves." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132065.
Full textBouali, Johann. "Motifs des fibrés en quadriques et jacobiennes intermédiaires relatives des paires K3-Fano." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS021/document.
Full textThis thesis consists of two parts. In the first part we study the Chow motive of a quadric bundle of odd relative dimension over a surface. We show that this motive admits a decomposition which involves the Prym motive of the double covering of the discriminant curve.In the second part, we consider Lagrangian fibrations, obtained as relative intermediate Jacobians of families of Fano threefolds containing a fixed K3 surface, and the existence of a symplectic compactification. In a particular case, we study a partial compactification using calculations with the software system Macaulay2
Toko, Wilson Bombe. "Bundles in the category of Frölicher spaces and symplectic structure." Thesis, 2008. http://hdl.handle.net/10539/5860.
Full textKrepski, Derek. "Pre-quantization of the Moduli Space of Flat G-bundles." Thesis, 2009. http://hdl.handle.net/1807/19047.
Full textConnery-Grigg, Dustin. "Fibrés symplectiques et la géométrie des difféomorphismes hamiltoniens." Thèse, 2016. http://hdl.handle.net/1866/18774.
Full textThis thesis presents a reasonably complete account of the elements theory of symplectic and Hamiltonian fibrations. We assume a familiarity and comfort with the basic notions of differential geometry and algebraic topology but little else. Proceeding from this, the first chapter develops the necessary notions from the theory of fiber bundles and G-fiber bundles, while the second chapter develops all the notions and theorems required to understand the later theory of symplectic fibrations. Most notably the second chapter includes a detailed account of the classical relationship between the flux homomorphism and Hamiltonian isotopies. The third chapter is where we develop the theory of symplectic and locally Hamiltonian fiber bundles, and in particular give an invariant construction of the coupling form on a symplectic fibration admitting an extension class. the third chapter ends with a proof of a structure theorem characterizing those symplectic fibrations for which the structure group reduces to the Hamiltonian group. In the final chapter, we present some applications of the theory of Hamiltonian fibrations by the way of characterizing the positive part of the Hofer norm of a Hamiltonian loop as the K-area of its associated Hamiltonian bundle over the sphere, and we finish by giving a proof of the non-degeneracy of the Hofer norm for closed symplectic manifolds.
Chassé, Jean-Philippe. "Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées." Thèse, 2018. http://hdl.handle.net/1866/22134.
Full textBauer, David. "Towards Discretization by Piecewise Pseudoholomorphic Curves." Doctoral thesis, 2012. https://ul.qucosa.de/id/qucosa%3A12277.
Full text