Academic literature on the topic 'Symplectic and Poisson geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symplectic and Poisson geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Symplectic and Poisson geometry"
BOJOWALD, MARTIN, and THOMAS STROBL. "POISSON GEOMETRY IN CONSTRAINED SYSTEMS." Reviews in Mathematical Physics 15, no. 07 (September 2003): 663–703. http://dx.doi.org/10.1142/s0129055x0300176x.
Full textContreras, Ivan, and Nicolás Martínez Alba. "Poly-symplectic geometry and the AKSZ formalism." Reviews in Mathematical Physics 33, no. 09 (May 31, 2021): 2150030. http://dx.doi.org/10.1142/s0129055x21500306.
Full textCahen, Michel, and LORENZ J. SCHWACHH�FER. "Special Symplectic Connections and Poisson Geometry." Letters in Mathematical Physics 69, no. 1-3 (July 2004): 115–37. http://dx.doi.org/10.1007/s11005-004-0474-4.
Full textCrooks, Peter, and Markus Röser. "The $\log$ symplectic geometry of Poisson slices." Journal of Symplectic Geometry 20, no. 1 (2022): 135–90. http://dx.doi.org/10.4310/jsg.2022.v20.n1.a4.
Full textGuillemin, Victor, Eva Miranda, and Ana Rita Pires. "Symplectic and Poisson geometry on b-manifolds." Advances in Mathematics 264 (October 2014): 864–96. http://dx.doi.org/10.1016/j.aim.2014.07.032.
Full textOrtega, Juan-Pablo, and Judor S. Ratiu. "Symmetry Reduction in Symplectic and Poisson Geometry." Letters in Mathematical Physics 69, no. 1-3 (July 2004): 11–60. http://dx.doi.org/10.1007/s11005-004-0898-x.
Full textIvancevic, V., and C. E. M. Pearce. "Poisson manifolds in generalised Hamiltonian biomechanics." Bulletin of the Australian Mathematical Society 63, no. 3 (June 2001): 515–26. http://dx.doi.org/10.1017/s0004972700019584.
Full textASADI, E., and J. A. SANDERS. "INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY." Glasgow Mathematical Journal 51, A (February 2009): 5–23. http://dx.doi.org/10.1017/s0017089508004746.
Full textLAVROV, P. M., and O. V. RADCHENKO. "SYMPLECTIC GEOMETRIES ON SUPERMANIFOLDS." International Journal of Modern Physics A 23, no. 09 (April 10, 2008): 1337–50. http://dx.doi.org/10.1142/s0217751x08039426.
Full textFrejlich, Pedro, and Ioan Mărcuț. "The Homology Class of a Poisson Transversal." International Mathematics Research Notices 2020, no. 10 (May 23, 2018): 2952–76. http://dx.doi.org/10.1093/imrn/rny105.
Full textDissertations / Theses on the topic "Symplectic and Poisson geometry"
Martino, Maurizio. "Symplectic reflection algebras and Poisson geometry." Thesis, University of Glasgow, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426614.
Full textRemsing, Claidiu Cristian. "Tangentially symplectic foliations." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1005233.
Full textKirchhoff-Lukat, Charlotte Sophie. "Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283007.
Full textCosta, Paulo Henrique Pereira da 1983. "Difusões em variedades de poisson." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306283.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T23:01:19Z (GMT). No. of bitstreams: 1 Costa_PauloHenriquePereirada_M.pdf: 875708 bytes, checksum: 8862a1813f1bb85b5d0269462a80501e (MD5) Previous issue date: 2009
Resumo: O objetivo desse trabalho é estudar as equações de Hamilton no contexto estocástico. Sendo necessário para tal um pouco de conhecimento a cerca dos seguintes assuntos: cálculo estocástico, geometria de segunda ordem, estruturas simpléticas e de Poisson. Abordamos importantes resultados, dentre eles o teorema de Darboux (coordenadas locais) em variedades simpléticas, teorema de Lie-Weinstein que de certa forma generaliza o teorema de Darboux em variedades de Poisson. Veremos que apesar de o ambiente natural para se estudar sistemas hamiltonianos ser variedades simpléticas, no caso estocástico esses sistemas se adaptam bem em variedades de Poisson. Além disso, para atingir a nossa meta, estudaremos equações diferenciais estocásticas em variedades de dimensão finita usando o operador de Stratonovich
Abstract: This dissertation deals with transfering Hamilton's equations in stochastic context. This requires some knowledge about the following: stochastic calculus, second order geometry and Poisson and simplectic structures. Important results that will be discussed in this theory are Darboux's theorem (local coordinates) for simplectic manifolds, and Lie-Weintein's theorem that is in a certain way of Darboux's theorem on Poisson manifolds. We will see that although the natural environment for studying hamiltonian systems is symplectic manifolds, if we have a Poisson structure we will still be able to study them. Moreover, to achieve our goal, we will study stochastic differential equations on finite dimensional manifolds using the Stratonovich operator
Mestrado
Geometria Estocastica
Mestre em Matemática
Van, De Ven Christiaan Jozef Farielda. "Quantum Systems and their Classical Limit A C*- Algebraic Approach." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/324358.
Full textMartin, Shaun K. "Symplectic geometry and gauge theory." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389209.
Full textSmith, Ivan. "Symplectic geometry of Lefschetz fibrations." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299234.
Full textBoalch, Philip Paul. "Symplectic geometry and isomonodromic deformations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301848.
Full textat, Andreas Cap@esi ac. "Equivariant Symplectic Geometry of Cotangent Bundles." Moscow Math. J. 1, No.2 (2001) 287-299, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi996.ps.
Full textRødland, Lukas. "Symplectic geometry and Calogero-Moser systems." Thesis, Uppsala universitet, Teoretisk fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256742.
Full textBooks on the topic "Symplectic and Poisson geometry"
Marsden, Jerrold E., and Tudor S. Ratiu, eds. The Breadth of Symplectic and Poisson Geometry. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/b138687.
Full textV, Karasev M., ed. Coherent transform, quantization and Poisson geometry. Providence, R.I: American Mathematical Society, 1998.
Find full textV, Karasev M., Shishkova Maria, and American Mathematical Society, eds. Quantum algebras and Poisson geometry in mathematical physics. Providence, R.I: American Mathematical Society, 2005.
Find full textMokhov, O. I. Symplectic and poisson geometry on loop spaces of smooth manifolds and integrable equations. [Amsterdam]: Harwood Academic Publishers, 2001.
Find full text1963-, Shapiro Michael, and Vainshtein Alek 1958-, eds. Cluster algebra and Poisson geometry. Providence, R.I: American Mathematical Society, 2010.
Find full textPuta, Mircea. Hamiltonian mechanical systems and geometric quantization. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textAebischer, B., M. Borer, M. Kälin, Ch Leuenberger, and H. M. Reimann. Symplectic Geometry. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-7512-7.
Full textFomenko, A. T. Symplectic geometry. 2nd ed. Yverdon-les-Bains, Switzerland: Gordon & Breach, 1995.
Find full textHofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder, and Felix Schlenk, eds. Symplectic Geometry. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4.
Full textBook chapters on the topic "Symplectic and Poisson geometry"
Koszul, Jean-Louis, and Yi Ming Zou. "Poisson Manifolds." In Introduction to Symplectic Geometry, 91–107. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3987-5_5.
Full textMichor, Peter. "Symplectic and Poisson geometry." In Graduate Studies in Mathematics, 411–76. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/093/07.
Full textMedina, Alberto. "Structures de Poisson affines." In Symplectic Geometry and Mathematical Physics, 288–302. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_14.
Full textLibermann, Paulette, and Charles-Michel Marle. "Symplectic manifolds and Poisson manifolds." In Symplectic Geometry and Analytical Mechanics, 89–184. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3807-6_3.
Full textWilbour, Don C., and Judith M. Arms. "Reduction Procedures for Poisson Manifolds." In Symplectic Geometry and Mathematical Physics, 462–75. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_24.
Full textVaisman, Izu. "Symplectic Realizations of Poisson Manifolds." In Lectures on the Geometry of Poisson Manifolds, 115–33. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8495-2_9.
Full textHuebschmann, Johannes. "On the Quantization of Poisson Algebras." In Symplectic Geometry and Mathematical Physics, 204–33. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_10.
Full textDufour, Jean-Paul. "Formes normales de structures de Poisson." In Symplectic Geometry and Mathematical Physics, 129–35. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_6.
Full textWoit, Peter. "The Poisson Bracket and Symplectic Geometry." In Quantum Theory, Groups and Representations, 189–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64612-1_14.
Full textOuzilou, R. "Quelques remarques sur les variétés de Poisson-Nijenhuis." In Symplectic Geometry and Mathematical Physics, 355–65. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_17.
Full textConference papers on the topic "Symplectic and Poisson geometry"
BANYAGA, AUGUSTIN, and PAUL DONATO. "A NOTE ON ISOTOPIES OF SYMPLECTIC AND POISSON STRUCTURES." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0010.
Full textAymerich-Valls, M., and J. C. Marrero. "Coisotropic submanifolds of linear Poisson manifolds and Lagrangian anchored vector subbundles of the symplectic cover." In XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2012. http://dx.doi.org/10.1063/1.4733372.
Full textMaschke, B. M. J., and A. J. van der Schaft. "Hamiltonian Systems, Pseudo-Poisson Brackets and Their Scattering Representation for Physical Systems." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8007.
Full textMCDUFF, DUSA. "WHAT IS SYMPLECTIC GEOMETRY?" In Proceedings of the 13th General Meeting. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814277686_0002.
Full textIshikawa, G., and S. Janeczko. "Bifurcations in symplectic space." In Geometry and topology of caustics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-8.
Full textASADI, ESMAEEL, and JAN A. SANDERS. "INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY." In Proceedings of the International Conference on SPT 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812776174_0003.
Full textBoyom, Michel Nguiffo. "Some lagrangian invariants of symplectic manifolds." In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-27.
Full textRomán-Roy, Narciso, Modesto Salgado, Silvia Vilariño, Rui Loja Fernandes, and Roger Picken. "Symmetries in k-Symplectic Field Theories." In GEOMETRY AND PHYSICS: XVI International Fall Workshop. AIP, 2008. http://dx.doi.org/10.1063/1.2958175.
Full textda Silva, Ana Cannas, Rui Loja Fernandes, and Roger Picken. "4-Manifolds with a Symplectic Bias." In GEOMETRY AND PHYSICS: XVI International Fall Workshop. AIP, 2008. http://dx.doi.org/10.1063/1.2958177.
Full textWURZBACHER, TILMANN. "INTRODUCTION TO DIFFERENTIABLE MANIFOLDS AND SYMPLECTIC GEOMETRY." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810571_0001.
Full textReports on the topic "Symplectic and Poisson geometry"
Blaga, Adara M. Remarks on Poisson Reduction on k-symplectic Manifolds. GIQ, 2012. http://dx.doi.org/10.7546/giq-10-2009-127-132.
Full textKalashnikova, Irina. Preconditioner and convergence study for the Quantum Computer Aided Design (QCAD) nonlinear poisson problem posed on the Ottawa Flat 270 design geometry. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1044970.
Full text