Dissertations / Theses on the topic 'Symmetry of solution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Symmetry of solution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Otto, Simon [Verfasser], and Klaus [Akademischer Betreuer] Solbach. "Solution to the Broadside Problem and Symmetry Properties of Periodic Leaky-Wave Antennas / Simon Otto. Betreuer: Klaus Solbach." Duisburg, 2016. http://d-nb.info/1109745710/34.
Full textABATANGELO, LAURA. "Multiplicity of solutions to elliptic equations the case of singular potentials in second order problems and morse theory in a fourth order problem." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/20336.
Full textWang, Qun. "Solutions Périodiques Symétriques dans le Problème de N-Vortex." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED069/document.
Full textThis thesis focuses on the study of the periodic solutions of the N-vortex problem of positive vorticity. This problem was formulated by Helmholtz more than 160 years ago and remains an active research field. For an undetermined number of vortices and general vorticities the system is not Liouville integrable and periodic solutions cannot be determined explicitly, except for relative equilibria. By using variational methods, we prove the existence of infinitely many non-trivial periodic solutions for arbitrary N and arbitrary positive vorticities. Moreover, when the vorticities are positive rational numbers, we show that there exists only finitely many energy levels on which there might exist a relative equilibrium. Finally, for the identical N-vortex problem, we show that there exists infinitely many simple choreographies
Sang, W. M. "A search for the Standard Model Higgs boson using the OPAL detector at LEP." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340840.
Full textEschke, Andy. "Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticity." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149970.
Full textCarter-Fenk, Kevin D. "Design and Implementation of Quantum Chemistry Methods for the Condensed Phase: Noncovalent Interactions at the Nanoscale and Excited States in Bulk Solution." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu161617640330551.
Full textEschke, Andy. "Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149965.
Full textMIRAGLIO, PIETRO. "ESTIMATES AND RIGIDITY FOR STABLE SOLUTIONS TO SOME NONLINEAR ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704717.
Full textThis thesis deals with the study of elliptic PDEs. The first part of the thesis is focused on the regularity of stable solutions to a nonlinear equation involving the p-Laplacian, in a bounded domain of the Euclidean space. The technique is based on Hardy-Sobolev inequalities in hypersurfaces involving the mean curvature, which are also investigated in the thesis. The second part concerns, instead, a nonlocal problem of Dirichlet-to-Neumann type. We study the one-dimensional symmetry of some subclasses of stable solutions, obtaining new results in dimensions n=2, 3. In addition, we carry out the study of the asymptotic behaviour of the operator associated with this nonlocal problem, using Γ-convergence techniques.
Mehraban, Arash. "Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1736.
Full textLau, Tracy. "Numerical solution of skew-symmetric linear systems." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17435.
Full textMesquita, Cláudia Aline Azevedo dos Santos 1984. "Existência e propriedades qualitativas para dois tipos de EDP's com potenciais singulares." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307596.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T06:33:09Z (GMT). No. of bitstreams: 1 Mesquita_ClaudiaAlineAzevedodosSantos_D.pdf: 1141685 bytes, checksum: a65a24d1917c5f998314d01970bb86e3 (MD5) Previous issue date: 2013
Resumo: Nesta tese, estudamos dois tipos de EDPs com potenciais singulares críticos, a saber, uma equação elíptica com operador poliharmônico e a equação do calor linear. Para a primeira, pesquisamos existência e propriedades qualitativas das soluções no espaço $\mathcal{H}_{k,\vec{\alpha}}$ que é uma soma de espaços $L^{\infty}$ com peso, o qual parece ser um espaço mínimo para o tipo de potencial singular considerado. Investigamos um conceito de simetria para soluções que estende o de simetria radial e satisfaz uma ideia de invariância em torno das singularidades. Para a segunda, uma estratégia baseada na transformada de Fourier é empregada para obter resultados de boa-colocação global e comportamento assintótico de soluções, sem hipóteses de pequenez e sem utilizar a desigualdade de Hardy. Em particular, obtemos boa-colocação de soluções para o caso do potencial monopolar $V(x)=\frac{\lambda}{\left\vert x\right\vert ^{2}}$ com $\left\vert \lambda\right\vert <\lambda_{\ast}=\frac{(n-2)^{2}}{4}$. Este valor limiar é o mesmo obtido em resultados de boa-colocação global em $L^2$ que utilizam desigualdades de Hardy e estimativas de energia. Desde que não existe uma relação de inclusão entre $L^{2}$ e $PM^{k}$, nossos resultados indicam que $\lambda_{\ast}$ é intrínseco da EDP e independe de uma particular abordagem. Palavras-chave: Equações elípticas, equação do calor, potencial singular, existência, simetria, autossimilaridade, comportamento assintótico
Abstract: In this thesis, we study two types of PDEs with critical singular potentials, namely, an elliptic equation with polyharmonic operator and the linear heat equation. For the first, we obtain existence and qualitative properties of solutions in $\mathcal{H}_{k,\vec{\alpha}}$-spaces which are a sum of weighted $L^{\infty}$-spaces, and seem to be a minimal framework for the potential profile of interest. We investigate a concept of symmetry for solutions which extends radial symmetry and carries out an idea of invariance around singularities. For the second, a strategy based on the Fourier transform is employed to obtain results of global well-posedness and asymptotic behavior of solutions, without smallness hypotheses and without using Hardy inequality. In particular, well-posedness of solutions is obtained for the case of the monopolar potential $V(x)=\frac{\lambda}{\left\vert x\right\vert ^{2}}$ with $\left\vert \lambda\right\vert <\lambda_{\ast}=\frac{(n-2)^{2}}{4}$. This threshold value is the same one obtained for the global well-posedness of $L^{2}$-solutions by means of Hardy inequalities and energy estimates. Since there is no inclusion relation between $L^{2}$ and $PM^{k}$, our results indicate that $\lambda_{\ast}$ is intrinsic of the PDE and independent of a particular approach. Keywords: Elliptic equation, heat equation, singular potential, existence, symmetry, self-similarity, asymptotic behavior
Doutorado
Matematica
Doutora em Matemática
Soltan, Omar. "Solution isomerization of commercial C₂-symmetric metallocene catalysts /." Link to the online version, 2006. http://hdl.handle.net/10019/1219.
Full textSoltan, Omar. "Solution isomerization of commercial C2-symmetric metallocene catalysts." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2856.
Full textThis study concerns the investigation of the isomerization of different metallocene catalysts in solution, and the effects thereof on the microstructure of polypropylenes prepared with these catalysts. Two C2 symmetric ansa metallocenes, ethylene-bis(indenyl) zirconium dichloride (EI) and dimethylsilyl-bis(2-methyl benzoindenyl) zirconium dichloride (MBI) were exposed, in solution, to both sunlight and UV radiation. The rac-meso isomerization of these catalysts were followed by 1H NMR spectroscopy. The reaching of a photostationary state is described, as well as the effect of isomerization of these catalysts in solution on the polymerization of propylene. Results show that metallocene structure has an effect on the isomerization rate and photostationary state. Results also show that the wavelength of light plays a role in the isomerization process. Effects on stereochemistry and molecular weight of the formed polymer as well as the catalyst activity is described and discussed. In addition the effect of activating the catalysts with MAO before exposure to light is discussed.
Hood, Simon. "Nonclassical symmetry reductions and exact solutions of nonlinear partial differential equations." Thesis, University of Exeter, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357042.
Full textKURKA, PAULO ROBERTO GARDEL. "NUMERICAL SOLUTIONS FOR EIGENPROBLEMS ASSOCIATED TO SYMMETRIC OPERATORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1985. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20274@1.
Full textA vector iterative technique is developed for the extraction of eigenpairs related to the solution of finite element problems. The algorithm consists of using inverse iteration and conjugate gradient methods so as to obtain the solution vector associated to the smallest eigenvalue. Eigensolutions are sequentially calculated by replacing the coefficient matrix in the problem equilibrium equation using a deflation technique. The extensive usage of this technique, introduces multiple eigenvalue in the coefficient matrix, requiring a procedure to combine both methods. Also, a study is performed to find the appropriate starting vector to be used with methods. The algorithm has been implemented and the results of some example solutions are given that yield insight into its predictive capabilities.
Perkins, Alun. "Static spherically symmetric solutions in higher derivative gravity." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44072.
Full textKrishnamoorthy, Mohan. "Contributions to the solution of the symmetric travelling salesman problem." Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46875.
Full textGranström, Frida. "Symmetry methods and some nonlinear differential equations : Background and illustrative examples." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-48020.
Full textDifferentialekvationer, framförallt icke-linjära, används ofta vid formulering av fundamentala naturlagar liksom många tekniska problem. Därmed finns det ett stort behov av metoder där det går att hitta lösningar i sluten form till sådana ekvationer. I det här arbetet studerar vi Lie symmetrimetoder för några icke-linjära ordinära differentialekvationer (ODE). Studien fokuserar på att identifiera och använda de underliggande symmetrierna av den givna första ordningens icke-linjära ordinära differentialekvationen. En utvidgning av metoden till högre ordningens ODE diskuteras också. Ett flertal illustrativa exempel presenteras.
Hwang, Eugene. "Classification of Isometry Algebras of Solutions of Einstein's Field Equations." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7578.
Full textMixon, Melody D. "Approximate solutions to the anti-symmetric quadratic spring system." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 1992. http://digitalcommons.auctr.edu/dissertations/3525.
Full textWaterton, Richard James. "Analysis of the soliton solutions of a 3-level Maxwell-Bloch system with rotational symmetry." Thesis, University of Glasgow, 2004. http://theses.gla.ac.uk/3867/.
Full textAlshahrani, Ali Mohammed S. "Tesseract : a 4D symmetric block cipher cryptography solution for real-time applications." Thesis, University of Essex, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.701375.
Full textKurepa, Alexandra. "Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball." Thesis, North Texas State University, 1987. https://digital.library.unt.edu/ark:/67531/metadc330725/.
Full textAmes, Ellery. "Singular Symmetric Hyperbolic Systems and Cosmological Solutions to the Einstein Equations." Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/17905.
Full textLopez, Rios Luis Fernando. "Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operator." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4701/document.
Full textThis work is devoted to nonlinear PDEs. The aim is to find regular solutions to some elliptic and hypo-elliptic PDEs and study their qualitative properties. The first part deals with the supercritical problem $$ -Delta u = lambda e^u,$$ $lambda > 0$, in an exterior domain under zero Dirichlet condition. A finite-dimensional reduction scheme provides the existence of infinitely many regular solutions whenever $lambda$ is sufficiently small.The second part is focused on the existence of bubbling solutions for the non-local equation $$ (-Delta)^s u =u^p, ,u>0,$$in a bounded, smooth domain under zero Dirichlet condition; where $0 0$ small). To this end, a finite-dimensional reduction scheme in suitable functional spaces is used, where the main part of the reduced function is given in terms of the Green's and Robin's functions of the domain. The existence of solutions depends on the existence of critical points of such a main term together with a non-degeneracy condition.In the third part, a non-local entire problem in the Heisenberg group $H$ is studied. The main interests are rigidity properties for stable solutions of $$(-Delta_H)^s v = f(v) in H,$$ $s in (0,1)$. A Poincaré-type inequality in connection with a degenerate elliptic equation in $R^4_+$ is provided. Through an extension (or ``lifting") procedure, this inequality will be then used to give a criterion under which the level sets of the above solutions are minimal surfaces in $H$, i.e. they have vanishing mean $H$-curvature
Shibayama, Mitsuru. "Multiple symmetric periodic solutions to the 2n-body problem with equal masses." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136738.
Full textFachin, M. P. G. "The divide-and-conquer method for the solution of the symmetric tridiagonal eigenproblem and transputer implementations." Thesis, University of Kent, 1994. https://kar.kent.ac.uk/21194/.
Full textFerrante, Cristian. "Cosmological and static spherically symmetric solutions to Einstein equations with an exponential scalar potential." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25606/.
Full textNzioki, Anne Marie. "A study of solutions and perturbations of spherically symmetric spacetimes in fourth order gravity." Doctoral thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/4916.
Full textIncludes bibliographical references.
In this thesis we use the 1+1+2 covariant approach to General Relativity to study exact solutions and perturbations of rotationally symmetric spacetimes in f(R) gravity, one of the most widely studied classes of fourth order gravity. We begin by introducing f(R) theories of gravity and present the general equations for these theories. We investigate the problem of matching different regions of spacetime, shedding light on the problem of constructing realistic inhomogeneous cosmologies in the context of f(R) gravity. We also study strong lensing in these fourth order theories of gravity derive the lens mass and magnification for the gravitational lens system. We provide an extensive review of both the 1+3 and 1+1+2 covariant approaches to f(R) theories of gravity and give the full system of evolution, propagation and constraint equations of LRS spacetimes. We then determine the conditions for the existence of spherically symmetric vacuum solutions of these fourth order field equations and prove a Jebsen-Birkhoff like theorem for f(R) theories of gravity and the necessary conditions required for the existence of Schwarzschild solution in these theories.
Krämer, Jan Martin [Verfasser], Bernd [Gutachter] Kawohl, and Guido [Gutachter] Sweers. "Regularity and Symmetry Results for Ground State Solutions of Quasilinear Elliptic Equations / Jan Martin Krämer ; Gutachter: Bernd Kawohl, Guido Sweers." Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1221718398/34.
Full textAktas, Metin. "Exact Supersymmetric Solution Of Schrodinger Equation For Some Potentials." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605819/index.pdf.
Full textdinger equation with some potentials is obtained. The normal and supersymmetric cases are considered. Deformed ring-shaped potential is solved in the parabolic and spherical coordinates. By taking appropriate values for the parameter q, similar results are obtained for Hulthé
n and exponential type screened potentials. Similarly, Morse, Pö
schl-Teller and Hulthé
n potentials are solved for the supersymmetric case. Supersymmetric solution of PT-/non-PT-symmetric and non-Hermitian Morse potential is also studied. The Nikiforov-Uvarov and Hamiltonian Hierarchy methods are used in the calculations. Eigenfunctions and corresponding energy eigenvalues are calculated analytically. Results are in good agreement with ones obtained before.
Morrison, George. "Rotationally-symmetric solutions to a nonlinear elliptic system under an incompressibility constraint and related problems." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/79856/.
Full textVolkin, Robert P. "Spherical Shell Solutions to the Radially Symmetric Aggregation Equation: Analysis and a Novel Numerical Method." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1575639958498416.
Full textGuerrero, Flores Danny Joel. "On Updating Preconditioners for the Iterative Solution of Linear Systems." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/104923.
Full textThe main topic of this thesis is updating preconditioners for solving large sparse linear systems Ax=b by using Krylov iterative methods. Two interesting types of problems are considered. In the first one is studied the iterative solution of non-singular, non-symmetric linear systems where the coefficient matrix A has a skew-symmetric part of low-rank or can be well approximated with a skew-symmetric low-rank matrix. Systems like this arise from the discretization of PDEs with certain Neumann boundary conditions, the discretization of integral equations as well as path following methods, for example, the Bratu problem and the Love's integral equation. The second type of linear systems considered are least squares (LS) problems that are solved by considering the solution of the equivalent normal equations system. More precisely, we consider the solution of modified and rank deficient LS problems. By modified LS problem, it is understood that the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Rank deficient LS problems are characterized by a coefficient matrix that has not full rank, which makes difficult the computation of an incomplete factorization of the normal equations. LS problems arise in many large-scale applications of the science and engineering as for instance neural networks, linear programming, exploration seismology or image processing. Usually, incomplete LU or incomplete Cholesky factorization are used as preconditioners for iterative methods. The main contribution of this thesis is the development of a technique for updating preconditioners by bordering. It consists in the computation of an approximate decomposition for an equivalent augmented linear system, that is used as preconditioner for the original problem. The theoretical study and the results of the numerical experiments presented in this thesis show the performance of the preconditioner technique proposed and its competitiveness compared with other methods available in the literature for computing preconditioners for the problems studied.
El tema principal d'esta tesi és actualitzar precondicionadors per a resoldre sistemes lineals grans i buits Ax=b per mitjà de l'ús de mètodes iteratius de Krylov. Es consideren dos tipus interessants de problemes. En el primer s'estudia la solució iterativa de sistemes lineals no singulars i antisimètrics, on la matriu de coeficients A té una part antisimètrica de baix rang, o bé pot aproximar-se amb una matriu antisimètrica de baix rang. Sistemes com este sorgixen de la discretització de PDEs amb certes condicions de frontera de Neumann, la discretització d'equacions integrals i mètodes de punts interiors, per exemple, el problema de Bratu i l'equació integral de Love. El segon tipus de sistemes lineals considerats, són problemes de mínims quadrats (LS) que es resolen considerant la solució del sistema equivalent d'equacions normals. Concretament, considerem la solució de problemes de LS modificats i de rang incomplet. Per problema LS modificat, s'entén que el conjunt d'equacions lineals s'actualitza amb alguna informació nova, s'agrega una nova variable o, al contrari, s'elimina alguna informació o variable del conjunt. En els problemes LS de rang deficient, la matriu de coeficients no té rang complet, la qual cosa dificultata el calcul d'una factorització incompleta de les equacions normals. Els problemes LS sorgixen en moltes aplicacions a gran escala de la ciència i l'enginyeria com, per exemple, xarxes neuronals, programació lineal, sismologia d'exploració o processament d'imatges. Els precondicionadors directes per a mètodes iteratius utilitzats més a sovint són les factoritzacions incompletes tipus ILU, o la factorització incompleta de Cholesky quan la matriu és simètrica definida positiva. La principal contribució d'esta tesi és el desenvolupament de tècniques d'actualització de precondicionadors. Bàsicament, el mètode consistix en el càlcul d'una descomposició incompleta per a un sistema lineal augmentat equivalent, que s'utilitza com a precondicionador pel problema original. L'estudi teòric i els resultats numèrics presentats en esta tesi mostren el rendiment de la tècnica de precondicionament proposta i la seua competitivitat en comparació amb altres mètodes disponibles en la literatura per a calcular precondicionadors per als problemes considerats.
Guerrero Flores, DJ. (2018). On Updating Preconditioners for the Iterative Solution of Linear Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/104923
TESIS
Tian, Rushun. "Existence and Multiplicity Results on Standing Wave Solutions of Some Coupled Nonlinear Schrodinger Equations." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1484.
Full textMacias, Diaz Jorge. "A Numerical Method for Computing Radially Symmetric Solutions of a Dissipative Nonlinear Modified Klein-Gordon Equation." ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/167.
Full textBardiaux, Benjamin [Verfasser]. "Structure calculation of proteins from solution and solid-state NMR data : Application to monomers and symmetric aggregates / Benjamin Bardiaux." Berlin : Freie Universität Berlin, 2009. http://d-nb.info/1023748983/34.
Full textFaridfathi, Gholamreza. "Exact Supersymmteric Solutions Of The Quantum Mechanics." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606276/index.pdf.
Full textodinger equation with the deformed Morse, Hulth¶
en, PÄ
oschl-Teller, Hyperbolic Kratzer-like, Screened Coulomb, and Exponential-Cosine Screened Coulomb (ECSC) potentials. The Hamiltonian hi- erarchy method is used to get the real energy eigenvalues and corresponding wave functions.
Fischer, Emily M. "Infinitely Many Rotationally Symmetric Solutions to a Class of Semilinear Laplace-Beltrami Equations on the Unit Sphere." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/62.
Full textRitter, Patricia Diana. "Threelogy in two parts 3-algebras in BLG models and a study of TMG solutions." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/5863.
Full textMiraglio, Pietro. "Estimates and rigidity for stable solutions to some nonlinear elliptic problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668832.
Full textMi tesis se encaja en el estudio de las EDPs elípticas. Está dividida en dos partes: la primera trata una ecuación no-lineal con el p-Laplaciano, la segunda de un problema no-local. En la primera parte, estudiamos la regularidad de las soluciones estables de una ecuación no lineal con el p-Laplaciano en un dominio acotado. Esta ecuacion es la versión no-lineal de la ámpliamente estudiada ecuacion semilineal con el Laplaciano. Cabré, Figalli, Ros-Oton, y Serra han demostrado recientemente que las soluciones estables de las ecuaciones semilineales son acotadas, y por tanto regulares, hasta la dimensión 9. Este resultado es optimal. En el caso del p-Laplaciano, la regularidad de las soluciones estables se conjetura de ser cierta hasta una dimension critica y, de hecho, se conocen ejemplos de soluciones no acotadas cuando la dimension llega al valor critico. Además, se ha demostrado que en el caso radial o assumiendo hipótesis fuertes sobre la no-linealidad las soluciones estables son acotadas hasta la dimension critica. En el primer capítulo, demostramos que las soluciones estables son acotadas, bajo una nueva condición en n y p, que es optimal en el caso radial, y más restrictiva en el caso general. Esta investigación mejora conocidos resultados del tema y es el primer ejemplo, para el p-Laplaciano, de un método que produce un resultado para el caso general y un resultado optimal en el caso radial. En la primera parte, nos ocupamos también de las desigualdades funcionales del tipo Hardy y Sobolev sobre hipersuperfícies del espacio Euclideo, todas conteniendo un término de curvatura media. Nuestra motivación proviene de varias apliaciones que tienen estas desigualdades en el estudio de estimaciones para las soluciones estables. En detalle, damos una demostración simple de la conocida desigualdad de Michael-Simon y Allard, obtenemos dos formas nuevas de la desigualdad de Hardy sobre hipersuperfícies, y otra desigualdad de Hardy-Poincaré. En la segunda parte, nos ocupamos de un problema de Dirichlet-Neumann que emerge de un modelo para las ondas en el agua. El sistema se describe con una ecuación de difusión en una tira de altura fija, que contiene un parámetro a en (-1,1). La parte superior de la tira es dotada de una condicion 0 de Neumann, mientras en la parte inferior tenemos un dato de Dirichlet y una ecuación con una nonlinearidad regular. Este problema puede ser reformulado como una ecuación no-local sobre la componente dotada del dato de Dirichlet, definiendo un operador de Dirichlet-Neumann apropiado. Primero, demostramos un teorema del tipo Liouville, que garantiza la simetría unidimensional de las soluciones monótonas, asumiendo un control sobre el crecimiento de la energía asociada. Como consecuencia, obtenemos la simetría 1D de las soluciones estables en dimension 2. Para n=3, obtenemos estimaciónes optimales de la energía para las soluciones que minimizan la energía y para las soluciones monótonas. Estas estimaciones nos conducen a la simetría 1D de estas clases de soluciones, aplicando nuestro teorema del tipo Liouville. Relativo a este problema, estudiamos también la naturaleza del operador de Dirichlet-Neumann. Primero, deducimos su expresión como operador de Fourier, que anteriormente solo se conocía para a=0. Este resultado evidencia la naturaleza del operador, que es no-local pero no puramente fraccionaria. Estudiamos en profundidad este comportamiento mixto del operador a través del estudio de la G-convergencia de un funcional energía asociado al operador. Demostramos la G-convergencia de nuestro funcional a un límite que corresponde a una energía de interacción pura cuando a en (0,1) y al perímetro clásico cuando a en (-1,0]. El límite a=0, así como el G-límite para el régimen a en (-1,0], es común a otros problemas no-locales tratados en la literatura. Al contrario, el funcional límite en el régimen puramente no-local es nuevo y diferente a otros funciona
Questa tesi si occupa di equazioni differenziali alle derivate parziali di tipo ellittico. È divisa in due parti: la prima riguarda un’equazione nonlineare per il p-Laplaciano, mentre la seconda è incentrata su un problema nonlocale, che può essere formulato per mezzo di un operatore di Dirichlet-Neumann collegato con il Laplaciano frazionario. Nella prima parte, studiamo la regolarità delle soluzioni stabili dell’equazione nonlineare per il p-Laplaciano dove W è un dominio limitato, p 2 (1,+¥) e f è una nonlinearità C1. Questa equazione è la versione nonlineare dell’equazione semilineare ������������Du = f (u) in un dominio limitato W Rn, che è stata ampiamente studiata in letteratura. Molto recentemente, Cabré, Figalli, Ros-Oton, e Serra [38] hanno dimostrato che le soluzioni stabili delle equazioni semilineari sono limitate, e quindi regolari, in dimensione n 9. Questo risultato è ottimale, dato che esempi di soluzioni illimitate e stabili sono noti in dimensione n 10. Inoltre, i risultati in [38] forniscono una risposta completa ad un annoso problema aperto, proposto da Brezis e Vázquez [25], sulla regolarità delle soluzioni estremali dell’equazione ������������Du = l f (u). Queste ultime sono infatti esempi non banali di soluzioni stabili di equazioni semilineari, che possono essere limitate o illimitate in dipendenza della dimensione n, del dominio W, e della nonlinearità f . In questa tesi studiamo la limitatezza delle soluzioni stabili di (0.4), che si congettura essere vera fino alla dimensione n < p + 4p/(p ������������ 1). Sono infatti noti esempi di soluzioni stabili e illimitate quando n p + 4p/(p ������������ 1), anche quando il dominio è la palla unitaria. Inoltre, nel caso radiale o assumendo ipotesi forti sulla nonlinearità, è stato dimostrato che le soluzioni stabili di (0.4) sono limitate quando n < p + 4p/(p ������������ 1). Nel Capitolo 1 della tesi dimostriamo una nuova stima L¥ a priori per le soluzioni stabili di (0.4), assumendo una nuova condizione su n e p, che è ottimale nel caso radiale e più restrittiva nel caso generale. Il nostro risultato migliora ciò che è noto in letteratura e ed è il primo esempio di tecnica che produce sia un risultato nel caso non radiale sia il risultato ottimale nel caso radiale. Per ottenere questo risultato estendiamo al caso del p-Laplaciano una tecnica sviluppata da Cabré [30] per il caso classico del problema, con p = 2. La strategia si basa su una disuguaglianza di Hardy sugli insiemi di livello della soluzione, combinata con una disuguaglianza di tipo geometrico per le soluzioni stabili di (0.4). Nella prima parte della tesi ci occupiamo anche di disuguaglianze funzionali di tipo Hardy e Sobolev, su ipersuperfici dello spazio euclideo. Nel fare ciò siamo motivati dalle varie applicazioni di questo tipo di risultati allo studio di stime a priori per le soluzioni stabili, sia nel caso semilineare che nel caso nonlineare ...
Cozzi, M. "QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/345873.
Full textThe thesis is concerned with the study of several qualitative properties shared by the solutions of elliptic equations set in the Euclidean space. The main focus of the work is on entire solutions of anisotropic/heterogeneous equations that show some kind of symmetric properties and, in particular, that possess one-dimensional symmetry. The dissertation is divided into two parts. The first part deals with local partial differential equations, while the second one addresses a class of less familiar nonlocal equations driven by integral operators.
Zabzina, Natalia. "Mathematical modelling approach to collective decision-making." Doctoral thesis, Uppsala universitet, Tillämpad matematik och statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-314903.
Full textFel serie i tryckt bok /Wrong series in the printed book
Rippl, Michael [Verfasser], Thomas [Akademischer Betreuer] Huckle, Bruno [Gutachter] Lang, and Thomas [Gutachter] Huckle. "Parallel Algorithms for the Solution of Banded Symmetric Generalized Eigenvalue Problems / Michael Rippl ; Gutachter: Bruno Lang, Thomas Huckle ; Betreuer: Thomas Huckle." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1230985379/34.
Full textAmorim, Charles Braga. "Existência e simetrias para uma equação elíptica não-linear com potencial monopolar e anisotrópico." Universidade Federal de Sergipe, 2015. https://ri.ufs.br/handle/riufs/5810.
Full textThis master thesis is concerned to nonlinear elliptic problem with mono-polar anisotropic potential u + u|u|p−1 + v (x)u + f(x) = 0 in Rn u(x) - 0, as |x| - 00 provided n > 3 and p > n n−2 . These results, between others things, deals with sub-critical, critical and super-critical nonlinearity. We obtain well-posedness of solutions, regularity in c2(Rn), symmetries and asymptotic behavior of solutions in singular spaces Hk. We employ Banach fixed technique and a theorem of regularity elliptic to get those results, this technique does not need of the Hardy type inequalities and variational methods.
Nesta dissertação estudamos o problema elíptico u + u|u|p−1 + v (x)u + f(x) = 0 em Rn u(x) - 0, quando |x| - 00 sujeito a restrições n > 3 e p > n n−2 , cobrindo os casos sub-críticos, críticos e super-críticos. Obtemos boa-colocação de soluções, regularidade, simetrias de soluções e comportamento assintótico em espaços singulares Hk. Empregamos um argumento de ponto fixo em Hk e Ek ao invés de usar desigualdades do tipo Hardy e métodos variacionais.
Tremper, Paul [Verfasser], and U. [Akademischer Betreuer] Nierste. "Aspects of CP Violation - An E6 Symmetric Nelson-Barr Model and a Supersymmetric Solution to ϵ′κ/ϵκ / Paul Tremper ; Betreuer: U. Nierste." Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1162541040/34.
Full textLemée, Thomas. "Shear-flow instabilities in closed flow." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112038.
Full textThis study focuses on the understanding of the physics of different instabilities in driven cavities, specifically the lid-driven cavity and the thermocapillarity driven cavity where flow in an incompressible fluid is driven either due to one or many moving walls or due to surface stresses that appear from surface tension gradients caused by thermal gradients. A spectral code is benchmarked on the well-studied case of the lid-cavity driven by one moving wall. In this case, It is shown that the flow transit form a steady regime to unsteady regime beyond a critical value of the Reynolds number. This work is the first to give a physical interpretation of the non-monotonic evolution of the critical Reynolds number versus the size of the cavity. When the fluid is driven by two facing walls moving in the same direction, the cavity possesses a plane of symmetry particularly sensitive. Thus, asymmetrical solutions can be observed in addition to the symmetrical solution above a certain value of the Reynolds number. The oscillatory transition between the symmetric solution and asymmetric solutions is explained physically by the forces in competition. In the asymmetric case, the change of the topology allows the flow to remain steady with increasing the Reynolds number. When the equilibrium is lost, an instability manifests by the appearance of an oscillatory regime in the asymmetric flow. In a rectangular cavity thermocapillary with a free surface, Smith and Davis found two types of thermal convective instabilities: steady longitudinal rolls and unsteady hydrothermal waves. The appearance of its instability has been highlighted repeatedly experimentally and numerically. While applications often involve more than a free surface, it seems that there is little knowledge about the thermocapillary driven flow with two free surfaces. A free liquid film possesses a particular plane of symmetry as in the case of the two-sided lid-driven cavity. A linear stability analysis for the free liquid film with two velocity profiles is presented with various Prandtl numbers. Beyond a critical Marangoni number, it is observed that these basic states are sensitive to four types of thermal convective instabilities, which can keep or break the symmetry of the system. Mechanisms that predict these instabilities are discovered and interpreted according to the value of the Prandtl number of the fluid. Comparison with the work of Smith and Davis is made. A direct numerical simulation is done to validate the results obtained with the linear stability analysis
Naz, Rehana. "Symmetry solutions and conservation laws for some partial differential equations in fluid mechanics." Thesis, 2009. http://hdl.handle.net/10539/6982.
Full textHuang, Jian-Wei, and 黃建瑋. "Solution of axial symmetry circular plate on Pasternak foundation by DQEM." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/88350329502035992398.
Full text國立成功大學
系統及船舶機電工程學系碩博士班
92
The coupling of solutions at discrete points is strong by using the differential quadrature element method (DQEM). Thus, convergence and accurate can be assured by using less discrete points and less arithmetic operations which can reduce the computer CPU time required. Like FEM, in using DQEM to solve a problem the domain is separated into many elements. The DQ discretization is carried out on an element-basis. The discretized governing differential or partial differential equations defined on the elements, transition conditions on inter-element boundaries and boundary conditions are assembled to obtain an overall algebraic system. In this work, the DQEM analysis model of shear-deformable axisymmetric circular plates on Pasternak elastic foundation is developed, and the related computer problems is implemented. Problems of static deformation are analyzed. They prove that the developed DQEM analysis model is excellent。
Denis, Nikolaos Athanasios. "Solution of optimization problems with spatial symmetry and applications to adaptive optics." 1998. https://scholarworks.umass.edu/dissertations/AAI9909160.
Full text