Academic literature on the topic 'Symmetrized bidisk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symmetrized bidisk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Symmetrized bidisk"
Bhattacharyya, Tirthankar, and Haripada Sau. "Interpolating sequences and the Toeplitz--Corona theorem on the symmetrized bidisk." Journal of Operator Theory 87, no. 1 (March 15, 2022): 435–59. http://dx.doi.org/10.7900/jot.2020oct07.2311.
Full textBhattacharyya, Tirthankar, and Haripada Sau. "Holomorphic functions on the symmetrized bidisk – Realization, interpolation and extension." Journal of Functional Analysis 274, no. 2 (January 2018): 504–24. http://dx.doi.org/10.1016/j.jfa.2017.09.013.
Full textAgler, J., and N. J. Young. "Operators having the symmetrized bidisc as a spectral set." Proceedings of the Edinburgh Mathematical Society 43, no. 1 (February 2000): 195–210. http://dx.doi.org/10.1017/s0013091500020812.
Full textSarkar, Jaydeb. "Operator Theory on Symmetrized Bidisc." Indiana University Mathematics Journal 64, no. 3 (2015): 847–73. http://dx.doi.org/10.1512/iumj.2015.64.5541.
Full textTrybuła, Maria. "Invariant metrics on the symmetrized bidisc." Complex Variables and Elliptic Equations 60, no. 4 (August 28, 2014): 559–65. http://dx.doi.org/10.1080/17476933.2014.948543.
Full textCOSTARA, C. "THE SYMMETRIZED BIDISC AND LEMPERT'S THEOREM." Bulletin of the London Mathematical Society 36, no. 05 (August 24, 2004): 656–62. http://dx.doi.org/10.1112/s0024609304003200.
Full textPflug, Peter, and Włodzimierz Zwonek. "Exhausting domains of the symmetrized bidisc." Arkiv för Matematik 50, no. 2 (October 2012): 397–402. http://dx.doi.org/10.1007/s11512-011-0153-5.
Full textBhattacharyya, Tirthankar, Anindya Biswas, and Anwoy Maitra. "On the geometry of the symmetrized bidisc." Indiana University Mathematics Journal 71, no. 2 (2022): 685–713. http://dx.doi.org/10.1512/iumj.2022.71.8896.
Full textAgler, Jim, Zinaida A. Lykova, and N. J. Young. "Extremal holomorphic maps and the symmetrized bidisc." Proceedings of the London Mathematical Society 106, no. 4 (October 26, 2012): 781–818. http://dx.doi.org/10.1112/plms/pds049.
Full textAgler, J., and N. J. Young. "A Schwarz Lemma for the Symmetrized Bidisc." Bulletin of the London Mathematical Society 33, no. 2 (March 2001): 175–86. http://dx.doi.org/10.1112/blms/33.2.175.
Full textDissertations / Theses on the topic "Symmetrized bidisk"
Lin, Cheng-Tsai, and 林成財. "Schwarz Lemma on Symmetrized Bidisc." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/05462082649779495998.
Full text東海大學
數學系
89
Let $\Gamma$ denote the set of symmetrized bidisc. In this thesis we discuss the Schwarz lemma on $\Gamma$ also known as the special flat problem on $\Gamma$ as: Given $\alpha_{2}\in\mathbb{D},~\alpha_{2}\neq0~$ and $(s_{2},p_{2})\in\Gamma$, find an analytic function $\varphi:\mathbb{D}\rightarrow\Gamma$with $\varphi(\lambda)=(s(\lambda),p(\lambda))$ satisfies $$\varphi(0)=(0,0),~\varphi(\alpha_{2})=(s_{2},p_{2})$$ Based on the equality of Carath\'odory and Kobayashi distances, and the Schur's theorem, we construct an analytic function $\varphi$ to solve this problem. Keywords: Spectral Nevanlinna-Pick interpolation, Poincar\'{e} distance, Carath\'odory distance, Kobayashi distance, Symmetrized bidisc, Schwarz lemma.
Lin, Tien-De, and 林天得. "Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/94495204389019542431.
Full text東海大學
數學系
89
Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want.
Lin, Chun-Ming, and 林俊銘. "Realization of Spectral Nevanlinna-Pick Interpolation Problem on Symmetrized Bidisc." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/40559244736778567050.
Full text東海大學
數學系
91
In this paper we discuss the two-point spectral Nevanlinna-Pick interpolation problem for 2 2 general case by using the previous results of T.D.Lin[13], C.T.Lin[8] and Yeh[9]: Given distinct , , , ,find an analytic function such that and it's realization.
Sau, Haripada. "Operator Theory on Symmetrized Bidisc and Tetrablock-some Explicit Constructions." Thesis, 2015. http://etd.iisc.ernet.in/2005/3887.
Full textChen, Chun Ming, and 陳駿銘. "The Graphics of Symmetrized Bidiscs and Spectral Interpolating Functions." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/85112132699826651919.
Full text東海大學
數學系
98
The symmetrrized bidisc is defined as the set of two coefficients of a quadratic equation with its roots located inside the unit disc. In this thesis, a matlab-based GUI is developed to the graphs of the symmetrized bidisc and associated spectral interpolating functions. Since the symmetrized bidisc belongs to C^2, its 3D projection is plotted as the real or imaginary part of one variable is fixed. By the way, the graph of the symmetrized bidisc is also shown when the radius of the root's location changes. Furthermorre, two kinds of approaches are used to construct the spectral interoplating function defined on the symmetrized bidisc are introduced and their graphs are depicted as well. Once the interpolating function is computed, we demo how to construct the interpolation function to solve the two-by-two spectral Nevanlinna-Pick problem. Keywords: unit disc, symmetrized bidisc, quadratic equation, matlab, GUI, spectral Nevanlinna- Pick interpolation problemn
Books on the topic "Symmetrized bidisk"
Young, Nicholas, Jim Agler, and Zinaida Lykova. Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc. American Mathematical Society, 2019.
Find full textBook chapters on the topic "Symmetrized bidisk"
Agler, Jim, Zinaida A. Lykova, and N. J. Young. "Carathéodory extremal functions on the symmetrized bidisc." In Operator Theory, Analysis and the State Space Approach, 1–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04269-1_1.
Full textAgler, J., F. B. Yeh, and N. J. Young. "Realization of Functions into the Symmetrised Bidisc." In Reproducing Kernel Spaces and Applications, 1–37. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8077-0_1.
Full text"Model Theory on the Symmetrized Bidisc." In Operator Analysis, 169–88. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108751292.008.
Full text