Contents
Academic literature on the topic 'Symmetric random walk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symmetric random walk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Symmetric random walk"
LI, KEQIN. "PERFORMANCE ANALYSIS AND EVALUATION OF RANDOM WALK ALGORITHMS ON WIRELESS NETWORKS." International Journal of Foundations of Computer Science 23, no. 04 (2012): 779–802. http://dx.doi.org/10.1142/s0129054112400369.
Full textZygmunt, Marcin J. "Non symmetric random walk on infinite graph." Opuscula Mathematica 31, no. 4 (2011): 669. http://dx.doi.org/10.7494/opmath.2011.31.4.669.
Full textGodrèche, Claude, and Jean-Marc Luck. "Survival probability of random walks and Lévy flights with stochastic resetting." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 7 (2022): 073201. http://dx.doi.org/10.1088/1742-5468/ac7a2a.
Full textYANG, ZHIHUI. "LARGE DEVIATION ASYMPTOTICS FOR RANDOM-WALK TYPE PERTURBATIONS." Stochastics and Dynamics 07, no. 01 (2007): 75–89. http://dx.doi.org/10.1142/s0219493707001950.
Full textTelcs, András, and Nicholas C. Wormald. "Branching and tree indexed random walks on fractals." Journal of Applied Probability 36, no. 4 (1999): 999–1011. http://dx.doi.org/10.1239/jap/1032374750.
Full textTelcs, András, and Nicholas C. Wormald. "Branching and tree indexed random walks on fractals." Journal of Applied Probability 36, no. 04 (1999): 999–1011. http://dx.doi.org/10.1017/s0021900200017812.
Full textHilário, Marcelo R., Daniel Kious, and Augusto Teixeira. "Random Walk on the Simple Symmetric Exclusion Process." Communications in Mathematical Physics 379, no. 1 (2020): 61–101. http://dx.doi.org/10.1007/s00220-020-03833-x.
Full textFujita, Takahiko. "A random walk analogue of Lévy’s Theorem." Studia Scientiarum Mathematicarum Hungarica 45, no. 2 (2008): 223–33. http://dx.doi.org/10.1556/sscmath.45.2008.2.50.
Full textISHIMURA, N., and N. YOSHIDA. "ON THE CONVERGENCE OF DISCRETE PROCESSES WITH MULTIPLE INDEPENDENT VARIABLES." ANZIAM Journal 58, no. 3-4 (2017): 379–85. http://dx.doi.org/10.1017/s1446181116000389.
Full textFang, Xiao, Han L. Gan, Susan Holmes, et al. "Arcsine laws for random walks generated from random permutations with applications to genomics." Journal of Applied Probability 58, no. 4 (2021): 851–67. http://dx.doi.org/10.1017/jpr.2021.14.
Full text