Journal articles on the topic 'Symmetric mean'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Symmetric mean.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mihoković, Lenka. "Coinciding Mean of the Two Symmetries on the Set of Mean Functions." Axioms 12, no. 3 (February 25, 2023): 238. http://dx.doi.org/10.3390/axioms12030238.
Full textChen, Lin-An, and Yuang-Chin Chiang. "Symmetric quantile and symmetric trimmed mean for linear regression model." Journal of Nonparametric Statistics 7, no. 2 (January 1996): 171–85. http://dx.doi.org/10.1080/10485259608832697.
Full textDziuk, G., and B. Kawohl. "On rotationally symmetric mean curvature flow." Journal of Differential Equations 93, no. 1 (September 1991): 142–49. http://dx.doi.org/10.1016/0022-0396(91)90024-4.
Full textTrif, Tiberiu. "Sharp inequalities involving the symmetric mean." Miskolc Mathematical Notes 3, no. 2 (2002): 157. http://dx.doi.org/10.18514/mmn.2002.59.
Full textSukochev, Fedor, and Aleksandr Veksler. "Mean ergodic theorem in symmetric spaces." Comptes Rendus Mathematique 355, no. 5 (May 2017): 559–62. http://dx.doi.org/10.1016/j.crma.2017.03.014.
Full textSukochev, Fedor, and Aleksandr Veksler. "The Mean Ergodic Theorem in symmetric spaces." Studia Mathematica 245, no. 3 (2019): 229–53. http://dx.doi.org/10.4064/sm170311-31-10.
Full textBidaut-Véron, Marie-Françoise. "Rotationally symmetric hypersurfaces with prescribed mean curvature." Pacific Journal of Mathematics 173, no. 1 (March 1, 1996): 29–67. http://dx.doi.org/10.2140/pjm.1996.173.29.
Full textGuo, LuJun, and GangSong Leng. "Mean width inequalities for symmetric Wulff shapes." Science China Mathematics 57, no. 8 (February 22, 2014): 1649–56. http://dx.doi.org/10.1007/s11425-014-4789-z.
Full textCao, Ricardo, and JoséManuel Prada-Sánchez. "Bootstrapping the mean of a symmetric population." Statistics & Probability Letters 17, no. 1 (May 1993): 43–48. http://dx.doi.org/10.1016/0167-7152(93)90193-m.
Full textFerreira, Maria João, and Renato Tribuzy. "Parallel mean curvature surfaces in symmetric spaces." Arkiv för Matematik 52, no. 1 (April 2014): 93–98. http://dx.doi.org/10.1007/s11512-012-0170-z.
Full textBalkanova, Olga, and Dmitry Frolenkov. "The mean value of symmetric square L-functions." Algebra & Number Theory 12, no. 1 (March 13, 2018): 35–59. http://dx.doi.org/10.2140/ant.2018.12.35.
Full textLee, Nany. "Constant mean curvature hypersurfaces in noncompact symmetric spaces." Tohoku Mathematical Journal 47, no. 4 (1995): 499–508. http://dx.doi.org/10.2748/tmj/1178225457.
Full textGuangHan, LI, WU ChuanXi, and GUO FangCheng. "Mean curvature type flow in rotationally symmetric spaces." SCIENTIA SINICA Mathematica 47, no. 2 (July 4, 2016): 313–32. http://dx.doi.org/10.1360/n012015-00328.
Full textStaszczak, A. "Nuclear mean field from chirally symmetric effective theory." Physics of Atomic Nuclei 66, no. 8 (August 2003): 1574–77. http://dx.doi.org/10.1134/1.1601768.
Full textVolchkov, V. V. "Theorems on ball mean values in symmetric spaces." Sbornik: Mathematics 192, no. 9 (October 31, 2001): 1275–96. http://dx.doi.org/10.1070/sm2001v192n09abeh000593.
Full textEngliš, Miroslav. "A mean value theorem on bounded symmetric domains." Proceedings of the American Mathematical Society 127, no. 11 (May 4, 1999): 3259–68. http://dx.doi.org/10.1090/s0002-9939-99-05052-2.
Full textPalmer, Bennett, and Wenxiang Zhu. "Axially symmetric volume constrained anisotropic mean curvature flow." Calculus of Variations and Partial Differential Equations 50, no. 3-4 (July 7, 2013): 639–63. http://dx.doi.org/10.1007/s00526-013-0650-4.
Full textHynd, Ryan, Sung-ho Park, and John McCuan. "Symmetric surfaces of constant mean curvature in 𝕊3." Pacific Journal of Mathematics 241, no. 1 (May 1, 2009): 63–115. http://dx.doi.org/10.2140/pjm.2009.241.63.
Full textMorawiec, A. "A note on mean orientation." Journal of Applied Crystallography 31, no. 5 (October 1, 1998): 818–19. http://dx.doi.org/10.1107/s0021889898003914.
Full textDong, Zheng, and Yushui Geng. "Some Trapezoid Intuitionistic Fuzzy Linguistic Maclaurin Symmetric Mean Operators and Their Application to Multiple-Attribute Decision Making." Symmetry 13, no. 10 (September 24, 2021): 1778. http://dx.doi.org/10.3390/sym13101778.
Full textColyer, G. J., and G. K. Vallis. "Zonal-Mean Atmospheric Dynamics of Slowly Rotating Terrestrial Planets." Journal of the Atmospheric Sciences 76, no. 5 (May 1, 2019): 1397–418. http://dx.doi.org/10.1175/jas-d-18-0180.1.
Full textZhu, Dong-Mei, Jia-Wen Gu, Feng-Hui Yu, Tak-Kuen Siu, and Wai-Ki Ching. "Optimal pairs trading with dynamic mean-variance objective." Mathematical Methods of Operations Research 94, no. 1 (August 2021): 145–68. http://dx.doi.org/10.1007/s00186-021-00751-z.
Full textWang, Liping, and Chunyi Zhao. "Infinitely Many Solutions for the Prescribed Boundary Mean Curvature Problem in 𝔹N." Canadian Journal of Mathematics 65, no. 4 (August 1, 2013): 927–60. http://dx.doi.org/10.4153/cjm-2012-054-2.
Full textMuratov, M., Yu Pashkova, and B. Z. Rubshtein. "Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions." Lobachevskii Journal of Mathematics 42, no. 5 (May 2021): 949–66. http://dx.doi.org/10.1134/s1995080221050103.
Full textPati, Vishwambhar, Mehrdad Shahshahani, and Alladi Sitaram. "The spherical mean value operator for compact symmetric spaces." Pacific Journal of Mathematics 168, no. 2 (April 1, 1995): 335–44. http://dx.doi.org/10.2140/pjm.1995.168.335.
Full textWimmer, Harald K. "On a weighted mean inequality for nonnegative symmetric matrices." Linear and Multilinear Algebra 17, no. 1 (January 1985): 25–27. http://dx.doi.org/10.1080/03081088508817639.
Full textBini, Dario A., and Bruno Iannazzo. "Computing the Karcher mean of symmetric positive definite matrices." Linear Algebra and its Applications 438, no. 4 (February 2013): 1700–1710. http://dx.doi.org/10.1016/j.laa.2011.08.052.
Full textGribova, N. V., V. N. Ryzhov, T. I. Schelkacheva, and E. E. Tareyeva. "Reflection symmetry in mean-field replica-symmetric spin glasses." Physics Letters A 315, no. 6 (September 2003): 467–73. http://dx.doi.org/10.1016/s0375-9601(03)01059-4.
Full textLi, Fachao, Jiqing Qiu, and Jianren Zhai. "The problem of completeness for -mean symmetric difference metric." Fuzzy Sets and Systems 116, no. 3 (December 2000): 459–70. http://dx.doi.org/10.1016/s0165-0114(98)00331-5.
Full textCesaroni, Annalisa, and Matteo Novaga. "Symmetric Self-Shrinkers for the Fractional Mean Curvature Flow." Journal of Geometric Analysis 30, no. 4 (May 28, 2019): 3698–715. http://dx.doi.org/10.1007/s12220-019-00214-2.
Full textChristensen, Jens, Fulton Gonzalez, and Tomoyuki Kakehi. "Surjectivity of mean value operators on noncompact symmetric spaces." Journal of Functional Analysis 272, no. 9 (May 2017): 3610–46. http://dx.doi.org/10.1016/j.jfa.2016.12.022.
Full textAthanassenas, M. "Volume-preserving mean curvature flow of rotationally symmetric surfaces." Commentarii Mathematici Helvetici 72, no. 1 (May 1997): 52–66. http://dx.doi.org/10.1007/pl00000366.
Full textLekner, John. "Axially symmetric charge distributions and the arithmetic–geometric mean." Journal of Electrostatics 67, no. 6 (November 2009): 880–85. http://dx.doi.org/10.1016/j.elstat.2009.07.007.
Full textAthanassenas, Maria, and Sevvandi Kandanaarachchi. "Convergence of axially symmetric volume-preserving mean curvature flow." Pacific Journal of Mathematics 259, no. 1 (August 31, 2012): 41–54. http://dx.doi.org/10.2140/pjm.2012.259.41.
Full textCumova, Denisa, and David Nawrocki. "A symmetric LPM model for heuristic mean–semivariance analysis." Journal of Economics and Business 63, no. 3 (May 2011): 217–36. http://dx.doi.org/10.1016/j.jeconbus.2011.01.004.
Full textMatioc, Bogdan-Vasile. "Boundary value problems for rotationally symmetric mean curvature flows." Archiv der Mathematik 89, no. 4 (September 18, 2007): 365–72. http://dx.doi.org/10.1007/s00013-007-2141-3.
Full textIwasaki, Katsunori. "Regular simplices, symmetric polynomials and the mean value property." Journal d'Analyse Mathématique 72, no. 1 (December 1997): 279–98. http://dx.doi.org/10.1007/bf02843162.
Full textKath, Ines. "Semisimplicity of indefinite extrinsic symmetric spaces and mean curvature." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 82, no. 1 (April 2012): 121–27. http://dx.doi.org/10.1007/s12188-012-0067-6.
Full textGual–Arnau, X., and R. Masó. "On the Mean Exit Time for Compact Symmetric Spaces." Acta Mathematica Sinica, English Series 21, no. 3 (March 20, 2005): 555–62. http://dx.doi.org/10.1007/s10114-004-0479-z.
Full textKum, Sangho, and Sangwoon Yun. "Incremental Gradient Method for Karcher Mean on Symmetric Cones." Journal of Optimization Theory and Applications 172, no. 1 (August 29, 2016): 141–55. http://dx.doi.org/10.1007/s10957-016-1000-4.
Full textBenhida, Chafiq, Muneo Chō, Eungil Ko, and Ji Eun Lee. "On the generalized mean transforms of complex symmetric operators." Banach Journal of Mathematical Analysis 14, no. 3 (January 1, 2020): 842–55. http://dx.doi.org/10.1007/s43037-019-00041-1.
Full textDing, Qi. "The inverse mean curvature flow in rotationally symmetric spaces." Chinese Annals of Mathematics, Series B 32, no. 1 (December 28, 2010): 27–44. http://dx.doi.org/10.1007/s11401-010-0626-z.
Full textAthanassenas, Maria, and Sevvandi Kandanaarachchi. "Singularities of axially symmetric volume preserving mean curvature flow." Communications in Analysis and Geometry 30, no. 8 (2022): 1683–711. http://dx.doi.org/10.4310/cag.2022.v30.n8.a1.
Full textBARRIOS, S. CRUZ, and M. C. NEMES. "ANATOMY OF RELATIVISTIC MEAN-FIELD APPROXIMATIONS." Modern Physics Letters A 07, no. 21 (July 10, 1992): 1915–21. http://dx.doi.org/10.1142/s0217732392001622.
Full textBucur. "Fixed Points for Multivalued Weighted Mean Contractions in a Symmetric Generalized Metric Space." Symmetry 12, no. 1 (January 9, 2020): 134. http://dx.doi.org/10.3390/sym12010134.
Full textKim, Sejong, Un Cig Ji, and Sangho Kum. "An Approach to the Log-Euclidean Mean via the Karcher Mean on Symmetric Cones." Taiwanese Journal of Mathematics 20, no. 1 (February 2016): 191–203. http://dx.doi.org/10.11650/tjm.20.2016.5559.
Full textAshraf, Ansa, Kifayat Ullah, Darko Božanić, Amir Hussain, Haolun Wang, and Adis Puška. "An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators." Axioms 12, no. 1 (December 21, 2022): 4. http://dx.doi.org/10.3390/axioms12010004.
Full textBourni, Theodora, and Mat Langford. "Type-II singularities of two-convex immersed mean curvature flow." Geometric Flows 2, no. 1 (October 1, 2016): 1–17. http://dx.doi.org/10.1515/geofl-2016-0001.
Full textJazayeri, S. M., and A. R. Sohrabi. "Locating Cantori for Symmetric Tokamap and Symmetric Ergodic Magnetic Limiter Map Using Mean-Energy Error Criterion." Brazilian Journal of Physics 44, no. 2-3 (May 7, 2014): 247–54. http://dx.doi.org/10.1007/s13538-014-0210-1.
Full textFeng, Min, Peide Liu, and Yushui Geng. "A Method of Multiple Attribute Group Decision Making Based on 2-Tuple Linguistic Dependent Maclaurin Symmetric Mean Operators." Symmetry 11, no. 1 (January 1, 2019): 31. http://dx.doi.org/10.3390/sym11010031.
Full text