Dissertations / Theses on the topic 'Symmetric mean'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 dissertations / theses for your research on the topic 'Symmetric mean.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Acar, Fatma. "Spinodal Instabilities In Symmetric Nuclear Matter Within A Nonlinear Relativistic Mean-field Approach." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613472/index.pdf.
Full textB = 0.4 &rho
0 , while most unstable behavior occurs in shorter wavelengths at lower baryon densities &rho
B = 0.2 &rho
0 . The unstable response of the system shifts towards longer wavelengths with the increasing temperature at both densities. The early growth of the density correlation functions are calculated, which provide valuable information about the initial size of the condensation and the average speed of condensing fragments. Furthermore, the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results are found in both non-relativistic and relativistic descriptions.
Danisman, Betul. "Spinodal Instabilities In Symmetric Nuclear Matter Within A Density-dependent Relativistic Mean-field Approach." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613473/index.pdf.
Full textb &asymp
&rho
0/4 (below the saturation density) and at low temperatures. We therefore present our results at low temperature T=1 MeV and at higher temperature T=5 MeV, and also at a lower initial baryon density &rho
b = 0.2 &rho
0 and a higher value &rho
b = 0.4 &rho
0 where unstable behavior is within them. Calculations in density-dependent model are compared with the other calculations obtained in a relativistic non-linear model and in a Skyrme type nonivrelativistic model. Our results are consistent with them. Qualitatively similar results show that the physics of the quantities are model-independent. The size of clusterization is estimated in two ways, by using half-wavelength of the most unstable mode and from the width of correlation function at half maximum. Furthermore, the average speed of condensing fragments during the initial phase of spinodal decomposition are determined by using the current density correlation functions.
Stroot, Maren [Verfasser]. "Singular behaviour of rotationally symmetric surfaces of codimension two evolving under mean curvature flow / Maren Stroot." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2010. http://d-nb.info/1008374482/34.
Full textGHIO, Maddalena. "Mean-Field games with absorption and singular controls." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/108480.
Full textCao, Jennifer Yue. "The performance and robustness of confidence intervals for the median of a symmetric distribution constructed assuming sampling from a Cauchy distribution." Kansas State University, 2012. http://hdl.handle.net/2097/14897.
Full textDepartment of Statistics
Paul Nelson
Trimmed means are robust estimators of location for distributions having heavy tails. Theory and simulation indicate that little efficiency is lost under normality when using appropriately trimmed means and that their use with data from distributions with heavy tails can result in improved performance. This report uses the principle of equivariance applied to trimmed means sampled from a Cauchy distribution to form a discrepancy function of the data and parameters whose distribution is free of the unknown median and scale parameter. Quantiles of this discrepancy function are estimated via asymptotic normality and simulation and used to construct confidence intervals for the median of a Cauchy distribution. A nonparametric approach based on the distribution of order statistics is also used to construct confidence intervals. The performance of these intervals in terms of coverage rate and average length is investigated via simulation when the data are actually sampled from a Cauchy distribution and when sampling is from normal and logistic distributions. The intervals based on simulation estimation of the quantiles of the discrepancy function are shown to perform well across a range of sample sizes and trimming proportions when the data are actually sampled from a Cauchy distribution and to be relatively robust when sampling is from the normal and logistic distributions.
Ramos, Álvaro Krüger. "Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/118222.
Full textWe prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
Karlsson, Emil. "The unweighted mean estimator in a Growth Curve model." Thesis, Linköpings universitet, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131043.
Full textKapetanopoulos, Tobias [Verfasser], Amin [Akademischer Betreuer] Coja-Oghlan, Amin [Gutachter] Coja-Oghlan, and Nicola [Gutachter] Kistler. "The replica symmetric phase in diluted mean-field models and the sharp threshold for jigsaw percolation in random graphs / Tobias Kapetanopoulos ; Gutachter: Amin Coja-Oghlan, Nicola Kistler ; Betreuer: Amin Coja-Oghlan." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2019. http://d-nb.info/119312607X/34.
Full textRyssens, Wouter. "Symmetry breaking in nuclear mean-field models." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/235692.
Full textOption Physique du Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Hynd, Ryan Charles. "Minimal Surfaces in three-sphere with special spherical symmetry." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5104.
Full textZhang, Xiangwen 1984. "Mean curvature flow for Lagrangian submanifolds with convex potentials." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111593.
Full textBan, Shufang. "Nuclear symmetry energy and neutron-proton pair correlations in microscopic mean field theory." Doctoral thesis, Stockholm : Fysik Physics, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4469.
Full textFlinn, Darrin Heinz. "Modeling bubble-particle interactions in flotation using hydrophobic solid surfaces." Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-06062008-154507/.
Full textSonnenschein, Jonas [Verfasser]. "Mean-field theory and projective symmetry group classifications of quantum spin liquids / Jonas Sonnenschein." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1220288179/34.
Full textElsayed, Elawady Mohamed. "Reflection Symmetry Detection in Images : Application to Photography Analysis." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES006/document.
Full textSymmetry is a fundamental principle of the visual perception to feel the equally distributed weights within foreground objects inside an image. It is used as a significant visual feature through various computer vision applications (i.e. object detection and segmentation), plus as an important composition measure in art domain (i.e. aesthetic analysis). The development of symmetry detection has been improved rapidly since last century. In this thesis, we mainly aim to propose new approaches to detect reflection symmetry inside real-world images in a global scale. In particular, our main contributions concern feature extraction and globalrepresentation of symmetry axes. First, we propose a novel approach that detects global salient edges inside an image using Log-Gabor filter banks, and defines symmetry oriented similarity through textural and color around these edges. This method wins a recent symmetry competition worldwide in single and multiple cases.Second, we introduce a weighted kernel density estimator to represent linear and directional symmetrical candidates in a continuous way, then propose a joint Gaussian-vonMises distance inside the mean-shift algorithm, to select the relevant symmetry axis candidates along side with their symmetrical densities. In addition, we introduce a new challenging dataset of single symmetry axes inside artistic photographies extracted from the large-scale Aesthetic Visual Analysis (AVA) dataset. The proposed contributions obtain superior results against state-of-art algorithms among all public datasets, especially multiple cases in a global scale. We conclude that the spatial and context information of each candidate axis inside an image can be used as a local or global symmetry measure for further image analysis and scene understanding purposes
Tarpanov, Dimitar. "Single-particle and collective excitations in a Skyrme mean field approach." Paris 11, 2008. http://www.theses.fr/2008PA112208.
Full textSubject of the thesis is the theoretical description of effects in neutron rich nuclei, within a self-consistent approach, as well as the investigation of the influence of the shell structure on the Mixed Symmetry States. The scientific goal is, within a microscopic method, to describe the structure and the excitations of atomic nuclei, which are now available at the radioactive ion facilities at GANIL and GSI. The topic of the Mixed Symmetry States investigation is to specify the mechanism by which the microscopic structure influences the F-spin symmetry in vibrational nuclei. In the development of the thesis, a SHF model has been used. An additional tensor term has been explicitly included. Calculations for the isotopic chains Z=14 and Z=50 as well as for the isotonic chains N=28, 82 have been performed. It was shown that the tensor term is indeed crucial for the evolution of the shell gap with the mass number for Z=14. On the other hand, it was proved that the tensor term has no influence on the shell gap for N=28. By the means of QRPA, a systematical study of slightly collective excitations — the so called Pygmy resonance has been done. Theoretically was investigated the appearance of a structure in neutron rich nuclei known as “neutron skin”. In the framework of QPM it was done a complete survey of MSS for nuclei in the N=80 region. For a first time a microscopical description of such structures in this region has been done. In the framework of this model a description of the recent experimental data on low-lying excitations in 138Ce has been done
Böhm, Ulrike, Gesche Pospiech, Hermann Körndle, and Susanne Narciss. "Physicists use mathematics to describe physical principles an mathematicians use physical phenomena to illustrate mathematical formula - Do they really mean the same?" Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82341.
Full textInakura, Tsunenori. "Study of New Region of Superdeformation with A=30-50 by means of the Symmetry-Unrestricted Cranked Skyrme-Hartree-Fock Method." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147801.
Full textHennig, Andreas [Verfasser]. "Study of Proton-Neutron Mixed-Symmetry Excitations in 96Ru by Means of Inelastic Proton Scattering and Digital Pulse Processing of Semiconductor Detector Signals / Andreas Hennig." München : Verlag Dr. Hut, 2014. http://d-nb.info/1063221986/34.
Full textKoh, Meng hock. "Fission-barriers and energy spectra of odd-mass actinide nuclei in self-consistent mean-field calculations." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0208/document.
Full textWhile there have been numerous microscopic calculations on fission barriers of even-even compoundnuclei, there are however, relatively few such work dedicated to odd-mass nuclei. This is dueto the complications posed by the breaking of the time-reversal symmetry at the mean-field leveldue to the presence of an unpaired nucleon. In order to circumvent this difficulty, previous fission barriercalculations of odd-mass nuclei have been performed by neglecting the effect of time-reversalsymmetry breaking. This work aims to improve on the description of fission barriers as well asthe spectroscopic properties of ground and fission-isomeric state, of some odd-mass actinide nucleiby taking the effect of time-reversal symmetry breaking into account. This has been perfomedwithin a Skyrme-Hartree-Fock-plus-BCS framework with blocking, where the BCS formalism hasbeen adapted to accomodate this symmetry breaking. The Skyrme nucleon-nucleon effective forcehas been used with various sets of parameters (SIII, SkM*, SLy5*). The residual pairing interactionhas been approximated by seniority forces whose neutron and proton parameters have beenfitted to reproduce the odd-even mass differences of some actinide nuclei. The low-lying rotationalband-head energies evaluated within the Bohr-Mottelson unified model have been determined forfour well-deformed odd-nuclei (235U, 239Pu, 237Np, 241Am) yielding a good qualitative agreementto the data for odd-neutron nuclei. The agreement was significantly less good for the odd-protonnuclei, possibly due to the use of the Slater approximation for the exchange Coulomb interaction.The deformation energies of two odd-neutron nuclei (235U and 239Pu) have been calculated forsome single-particle configurations up to a point beyond the outer fission-barrier. Axial symmetrynuclear shape has been assumed while a breaking of the left-right (or intrinsic parity) symmetryhas been allowed around the outer fission-barrier. The fission-barrier heights of such odd-neutronnuclei depend significantly on the particle configurations. A special attention has been paid tothe very important rotational correction to deformation energies. In particular, the correction ofthe moment of inertia calculated from the usual Belyaev expression was considered. Overall, aqualitative agreement with available data on fission-barrier heights for the considered odd-neutronnuclei and their even neighbours has been obtained
Miraglio, Pietro. "Estimates and rigidity for stable solutions to some nonlinear elliptic problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668832.
Full textMi tesis se encaja en el estudio de las EDPs elípticas. Está dividida en dos partes: la primera trata una ecuación no-lineal con el p-Laplaciano, la segunda de un problema no-local. En la primera parte, estudiamos la regularidad de las soluciones estables de una ecuación no lineal con el p-Laplaciano en un dominio acotado. Esta ecuacion es la versión no-lineal de la ámpliamente estudiada ecuacion semilineal con el Laplaciano. Cabré, Figalli, Ros-Oton, y Serra han demostrado recientemente que las soluciones estables de las ecuaciones semilineales son acotadas, y por tanto regulares, hasta la dimensión 9. Este resultado es optimal. En el caso del p-Laplaciano, la regularidad de las soluciones estables se conjetura de ser cierta hasta una dimension critica y, de hecho, se conocen ejemplos de soluciones no acotadas cuando la dimension llega al valor critico. Además, se ha demostrado que en el caso radial o assumiendo hipótesis fuertes sobre la no-linealidad las soluciones estables son acotadas hasta la dimension critica. En el primer capítulo, demostramos que las soluciones estables son acotadas, bajo una nueva condición en n y p, que es optimal en el caso radial, y más restrictiva en el caso general. Esta investigación mejora conocidos resultados del tema y es el primer ejemplo, para el p-Laplaciano, de un método que produce un resultado para el caso general y un resultado optimal en el caso radial. En la primera parte, nos ocupamos también de las desigualdades funcionales del tipo Hardy y Sobolev sobre hipersuperfícies del espacio Euclideo, todas conteniendo un término de curvatura media. Nuestra motivación proviene de varias apliaciones que tienen estas desigualdades en el estudio de estimaciones para las soluciones estables. En detalle, damos una demostración simple de la conocida desigualdad de Michael-Simon y Allard, obtenemos dos formas nuevas de la desigualdad de Hardy sobre hipersuperfícies, y otra desigualdad de Hardy-Poincaré. En la segunda parte, nos ocupamos de un problema de Dirichlet-Neumann que emerge de un modelo para las ondas en el agua. El sistema se describe con una ecuación de difusión en una tira de altura fija, que contiene un parámetro a en (-1,1). La parte superior de la tira es dotada de una condicion 0 de Neumann, mientras en la parte inferior tenemos un dato de Dirichlet y una ecuación con una nonlinearidad regular. Este problema puede ser reformulado como una ecuación no-local sobre la componente dotada del dato de Dirichlet, definiendo un operador de Dirichlet-Neumann apropiado. Primero, demostramos un teorema del tipo Liouville, que garantiza la simetría unidimensional de las soluciones monótonas, asumiendo un control sobre el crecimiento de la energía asociada. Como consecuencia, obtenemos la simetría 1D de las soluciones estables en dimension 2. Para n=3, obtenemos estimaciónes optimales de la energía para las soluciones que minimizan la energía y para las soluciones monótonas. Estas estimaciones nos conducen a la simetría 1D de estas clases de soluciones, aplicando nuestro teorema del tipo Liouville. Relativo a este problema, estudiamos también la naturaleza del operador de Dirichlet-Neumann. Primero, deducimos su expresión como operador de Fourier, que anteriormente solo se conocía para a=0. Este resultado evidencia la naturaleza del operador, que es no-local pero no puramente fraccionaria. Estudiamos en profundidad este comportamiento mixto del operador a través del estudio de la G-convergencia de un funcional energía asociado al operador. Demostramos la G-convergencia de nuestro funcional a un límite que corresponde a una energía de interacción pura cuando a en (0,1) y al perímetro clásico cuando a en (-1,0]. El límite a=0, así como el G-límite para el régimen a en (-1,0], es común a otros problemas no-locales tratados en la literatura. Al contrario, el funcional límite en el régimen puramente no-local es nuevo y diferente a otros funciona
Questa tesi si occupa di equazioni differenziali alle derivate parziali di tipo ellittico. È divisa in due parti: la prima riguarda un’equazione nonlineare per il p-Laplaciano, mentre la seconda è incentrata su un problema nonlocale, che può essere formulato per mezzo di un operatore di Dirichlet-Neumann collegato con il Laplaciano frazionario. Nella prima parte, studiamo la regolarità delle soluzioni stabili dell’equazione nonlineare per il p-Laplaciano dove W è un dominio limitato, p 2 (1,+¥) e f è una nonlinearità C1. Questa equazione è la versione nonlineare dell’equazione semilineare ������������Du = f (u) in un dominio limitato W Rn, che è stata ampiamente studiata in letteratura. Molto recentemente, Cabré, Figalli, Ros-Oton, e Serra [38] hanno dimostrato che le soluzioni stabili delle equazioni semilineari sono limitate, e quindi regolari, in dimensione n 9. Questo risultato è ottimale, dato che esempi di soluzioni illimitate e stabili sono noti in dimensione n 10. Inoltre, i risultati in [38] forniscono una risposta completa ad un annoso problema aperto, proposto da Brezis e Vázquez [25], sulla regolarità delle soluzioni estremali dell’equazione ������������Du = l f (u). Queste ultime sono infatti esempi non banali di soluzioni stabili di equazioni semilineari, che possono essere limitate o illimitate in dipendenza della dimensione n, del dominio W, e della nonlinearità f . In questa tesi studiamo la limitatezza delle soluzioni stabili di (0.4), che si congettura essere vera fino alla dimensione n < p + 4p/(p ������������ 1). Sono infatti noti esempi di soluzioni stabili e illimitate quando n p + 4p/(p ������������ 1), anche quando il dominio è la palla unitaria. Inoltre, nel caso radiale o assumendo ipotesi forti sulla nonlinearità, è stato dimostrato che le soluzioni stabili di (0.4) sono limitate quando n < p + 4p/(p ������������ 1). Nel Capitolo 1 della tesi dimostriamo una nuova stima L¥ a priori per le soluzioni stabili di (0.4), assumendo una nuova condizione su n e p, che è ottimale nel caso radiale e più restrittiva nel caso generale. Il nostro risultato migliora ciò che è noto in letteratura e ed è il primo esempio di tecnica che produce sia un risultato nel caso non radiale sia il risultato ottimale nel caso radiale. Per ottenere questo risultato estendiamo al caso del p-Laplaciano una tecnica sviluppata da Cabré [30] per il caso classico del problema, con p = 2. La strategia si basa su una disuguaglianza di Hardy sugli insiemi di livello della soluzione, combinata con una disuguaglianza di tipo geometrico per le soluzioni stabili di (0.4). Nella prima parte della tesi ci occupiamo anche di disuguaglianze funzionali di tipo Hardy e Sobolev, su ipersuperfici dello spazio euclideo. Nel fare ciò siamo motivati dalle varie applicazioni di questo tipo di risultati allo studio di stime a priori per le soluzioni stabili, sia nel caso semilineare che nel caso nonlineare ...
Rouvel, David. "Essai sur les symétries géométriques et les transitions de forme du noyau de l'atome." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE032/document.
Full textThe geometrical symmetries used in nuclear physics are not very diversified, essentially the symmetry of the triaxial ellipsoid. One proposes therefore a rigourous method allowing to study the temporal evolution and the possibility of the existence of new symmetries among them the tetrahedral symmetry. The formalism of SCHRÖDINGER equation is reformulated in the framework of RIEMANN’s spaces. This formalism is used in the context of the atomic nucleus where one applies the mean-field theory combined with the adiabatic approximation. The nucleus is the terrain of two types of motions adiabatically separated, the quick motion of the nucleons in the mean-field and the collective motion modifying slowly the meanfield. The second one is governed by a collective SCHRÖDINGER equation written down in a space whose metric is given by the mass tensor. The study of the nucleus geometry is then computable with the help of two big programs developped within the thesis
MIRAGLIO, PIETRO. "ESTIMATES AND RIGIDITY FOR STABLE SOLUTIONS TO SOME NONLINEAR ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704717.
Full textThis thesis deals with the study of elliptic PDEs. The first part of the thesis is focused on the regularity of stable solutions to a nonlinear equation involving the p-Laplacian, in a bounded domain of the Euclidean space. The technique is based on Hardy-Sobolev inequalities in hypersurfaces involving the mean curvature, which are also investigated in the thesis. The second part concerns, instead, a nonlocal problem of Dirichlet-to-Neumann type. We study the one-dimensional symmetry of some subclasses of stable solutions, obtaining new results in dimensions n=2, 3. In addition, we carry out the study of the asymptotic behaviour of the operator associated with this nonlocal problem, using Γ-convergence techniques.
Jonasson, Martin. "Hur vanligt är det? : Våld i nära relationer: män som offer och kvinnor som förövare. En systematisk litteraturstudie." Thesis, Linnéuniversitetet, Institutionen för socialt arbete, SA, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-13556.
Full textMichalkova, Marcela. "Gender Asymmetries in Slovak Personal Nouns." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1262189760.
Full textSengele, Loic. "Etude des modes octupolaires dans le noyau atomique de 156Gd : recherche expérimentale de la symétrie tétraédrique." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE038/document.
Full textGeometrical symmetries play an important role in the understanding of all physical systems. In nuclear structure they are linked to the shape of the mean-field used to describe the atomic nuclei properties. In the framework of this thesis, we have used the predictions obtained with the help of the nuclear mean-field Hamiltonian with the Universal Woods-Saxon potential to study the effects of the so-called “High-Rank” symmetries. These point-group symmetries lead to a nuclear state degeneracy of the order of 4. It is predicted that the tetrahedral symmetry affects the stability of nuclei close to the tetrahedral magic numbers [Z,N]=[32,40,56,64,70,90-94,136]. We have selected the Rare-Earth region close to the tetrahedral doubly magic nucleus 154Gd for our study. In this region, there exists negative parity structures poorly understood. Yet the tetrahedral symmetry, as related to a non-axial octupole deformation, breaks the reflection symmetry and leads to the negative parity states. Following a systematics of experimental properties of the nuclei in this region, we have selected 156Gd as the object of our study for the octupole excitation modes. We have used the reduced transitions probabilities to discriminate between these modes. To achieve this goal, we have performed three gamma spectroscopy experiments at the ILL in Grenoble with the EXILL and GAMS detectors to measure the lifetimes and the gamma transition intensities from the candidate states. The analysis of our results shows that including the tetrahedral shape helps to understand the dipole transition probabilities. This result will open new experimental and theoretical perspectives
Samyn, Mathieu. "Improved nuclear predictions of relevance to the r-process of nucleosynthesis." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211170.
Full textWang, Zhao-Ching, and 王兆慶. "Symmetric Categorized Mean and Comparison of Categorized Mean Methods." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/95571707969480831681.
Full textKE, ZHAO-CHUAN, and 柯昭川. "Restricted risk Bayes estimations of themultivariate normal mean with spherically symmetric prior." Thesis, 1987. http://ndltd.ncl.edu.tw/handle/16366798079550130759.
Full textOu, Winston Chih-Wei. "Natural extremal operators on BMO A[symbol for infinity] : symmetries and near-reciprocities /." 2001. http://wwwlib.umi.com/dissertations/fullcit/3006542.
Full textDavis, Edward David. "Dynamical symmetry-breaking and the mean-field approach in microscopic nuclear theory." Thesis, 2015. http://hdl.handle.net/10539/16594.
Full textCONCETTI, FRANCESCO. "The full replica symmetry breaking solution in mean-field spin glass models." Doctoral thesis, 2019. http://hdl.handle.net/11573/1316301.
Full textLin, Keng-Sheng, and 林耿生. "An Efficient Line Symmetry-Based K-Means Algorithm." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/76135711527467374979.
Full text國立臺灣科技大學
資訊工程系
93
Recently, Su and Chou presented an efficient point symmetry--based K--means algorithm. Extending their point symmetry--based K--means algorithm, this paper presents a novel line symmetry--based K--means algorithm for clustering the data set with line symmetry property. Based on some real data sets, experimental results demonstrate that our proposed line symmetry--based K--means algorithm is rather encouraging.
Ganguly, Pritam. "Quasi-analytic Functions, Spherical Means, and Uncertainty Principles on Heisenberg Groups and Symmetric Spaces." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5697.
Full textLin, Jhin-Sian, and 林志賢. "A Faster and More Robust Point Symmetry-Based K-means Algorithm." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/87434103856058115473.
Full text國立臺灣科技大學
資訊工程系
92
Based on the recently published elegant point symmetry distance (PSD) measure, this paper presents a novel PSD measure, namely symmetry similarity level (SSL) operator for K--means algorithm. Our proposed modified point symmetry-based K-means (MPSK) algorithm is more robust than the previous PSK algorithm by Su and Chou. Not only our proposed MPSK algorithm is suitable for the symmetrical intra--clusters as the PSK algorithm does, our proposed MPSK algorithm is also suitable for the symmetrical inter-clusters. In addition, this paper presents two speedup strategies to reduce the time required in our proposed MPSK algorithm. Experimental results demonstrate the significant execution-time improvement and the extension to the symmetrical inter-clusters of our proposed MPSK algorithm when compared to the previous PSK algorithm.
Porter, Heidi Annette. "Discourse means of jointly produced asymmetry and symmetry in physician-patient conversation." 2002. http://www.lib.ncsu.edu/theses/available/etd-06132002-151011/unrestricted/etd.pdf.
Full textIsaias, Ioannis Ugo. "Cognitive and behavioral impairment in Parkinson's disease : a comparison between patients with symmetrical/asymmetrical reduction of nigrostriatal dopaminergic neurons measured by means of single-photon emission computed tomography (SPECT) and the tracer [123l]loflupane /." 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=013525694&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textMalik, Tuhin. "Equation of state for dense matter from finite nuclei to neutron star mergers." Doctoral thesis, 2019. http://hdl.handle.net/10316/94981.
Full textEquation of state (EOS) of dense matter has been constrained from the experimental data available on the properties of finite nuclei and neutron stars. Towards this purpose, a diverse set of nuclear energy density functionals based on relativistic and non-relativistic mean field models have been employed. These EOSs are so chosen that they are consistent with the bulk properties of the finite nuclei. The values of various nuclear matter parameters which predominantly govern the behaviour of the EOS are determined through their correlations with the properties of the neutron stars such as radii, tidal deformability and maximum mass of the neutron stars. The nuclear matter parameters considered are incompressibility, symmetry energy and their density derivatives which appear in the expansion of the EOS around the saturation density. The radii and tidal deformability of the neutron star with the canonical mass display strong correlations with the linear combinations of slopes of the incompressibility and symmetry energy coefficients. Similar correlations with the curvature of the symmetry energy coefficient are also obsvered indicating that the properties of the neutron stars are sensitive to the high density behaviour of the symmetry energy. It is also shown that the giant resonances in nuclei are instrumental in limiting the tidal deformability parameter and the radius of a neutron star in somewhat narrower bounds. The outcomes of the present thesis is important in view of the fact that the accurate values of the various neutron star observables as considered are expected to be available in near future.