Academic literature on the topic 'Symbiose intestinale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symbiose intestinale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Symbiose intestinale"

1

Bayer, Wolfgang, and Karlheiz Schmidt. "Intestinale Dysbiosen erkennen und therapieren." Ernährung & Medizin 32, no. 03 (August 30, 2017): 105–8. http://dx.doi.org/10.1055/s-0043-116347.

Full text
Abstract:
ZusammenfassungEine Dysbiose bezeichnet im Gegensatz zur Eubiose, Normobiose oder Symbiose Veränderungen der intestinalen Mikrobiota (früher als Darmflora bezeichnet), die mit krankhaften, häufig entzündlichen Symptomen korreliert ist. Ursachen einer Dysbiose sind z. B. eine Überwucherung mit pathogenen Keimen, chronisch entzündliche Darmerkrankungen, aber auch Einflüsse durch Arzneimittel wie Antibiotika, Kortikosteroide etc. Vielfältige weitere Wechselwirkungen sind zu berücksichtigen wie Ernährungseinflüsse, Genussgifte (Rauchen, Alkohol) sowie auch Wechselwirkungen mit dem Hormonsystem, dem Immunsystem, dem Nervensystem und vielen weiteren Regelkreisen.
APA, Harvard, Vancouver, ISO, and other styles
2

Koga, Ryuichi, Masahiko Tanahashi, Naruo Nikoh, Takahiro Hosokawa, Xian-Ying Meng, Minoru Moriyama, and Takema Fukatsu. "Host’s guardian protein counters degenerative symbiont evolution." Proceedings of the National Academy of Sciences 118, no. 25 (June 14, 2021): e2103957118. http://dx.doi.org/10.1073/pnas.2103957118.

Full text
Abstract:
Microbial symbioses significantly contribute to diverse organisms, where long-lasting associations tend to result in symbiont genome erosion, uncultivability, extinction, and replacement. How such inherently deteriorating symbiosis can be harnessed to stable partnership is of general evolutionary interest. Here, we report the discovery of a host protein essential for sustaining symbiosis. Plataspid stinkbugs obligatorily host an uncultivable and genome-reduced gut symbiont, Ishikawaella. Upon oviposition, females deposit “capsules” for symbiont delivery to offspring. Within the capsules, the fragile symbiotic bacteria survive the harsh conditions outside the host until acquired by newborn nymphs to establish vertical transmission. We identified a single protein dominating the capsule content, which is massively secreted by female-specific intestinal organs, embedding the symbiont cells, and packaged into the capsules. Knockdown of the protein resulted in symbiont degeneration, arrested capsule production, symbiont transmission failure, and retarded nymphal growth, unveiling its essential function for ensuring symbiont survival and vertical transmission. The protein originated from a lineage of odorant-binding protein-like multigene family, shedding light on the origin of evolutionary novelty regarding symbiosis. Experimental suppression of capsule production extended the female’s lifespan, uncovering a substantial cost for maintaining symbiosis. In addition to the host’s guardian protein, the symbiont’s molecular chaperone, GroEL, was overproduced in the capsules, highlighting that the symbiont’s eroding functionality is compensated for by stabilizer molecules of host and symbiont origins. Our finding provides insight into how intimate host–symbiont associations can be maintained over evolutionary time despite the symbiont’s potential vulnerability to degeneration and malfunctioning.
APA, Harvard, Vancouver, ISO, and other styles
3

Ohbayashi, Tsubasa, Kazutaka Takeshita, Wataru Kitagawa, Naruo Nikoh, Ryuichi Koga, Xian-Ying Meng, Kanako Tago, et al. "Insect’s intestinal organ for symbiont sorting." Proceedings of the National Academy of Sciences 112, no. 37 (August 31, 2015): E5179—E5188. http://dx.doi.org/10.1073/pnas.1511454112.

Full text
Abstract:
Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host–symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ’s ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host’s control and symbiont’s motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor.
APA, Harvard, Vancouver, ISO, and other styles
4

Tan, Tze Guan, Esen Sefik, Naama Geva-Zatorsky, Lindsay Kua, Debdut Naskar, Fei Teng, Lesley Pasman, et al. "Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice." Proceedings of the National Academy of Sciences 113, no. 50 (November 23, 2016): E8141—E8150. http://dx.doi.org/10.1073/pnas.1617460113.

Full text
Abstract:
Th17 cells accrue in the intestine in response to particular microbes. In rodents, segmented filamentous bacteria (SFB) induce intestinal Th17 cells, but analogously functioning microbes in humans remain undefined. Here, we identified human symbiont bacterial species, in particularBifidobacterium adolescentis, that could, alone, induce Th17 cells in the murine intestine. Similar to SFB,B. adolescentiswas closely associated with the gut epithelium and engendered cognate Th17 cells without attendant inflammation. However,B. adolescentiselicited a transcriptional program clearly distinct from that of SFB, suggesting an alternative mechanism of promoting Th17 cell accumulation. Inoculation of mice withB. adolescentisexacerbated autoimmune arthritis in the K/BxN mouse model. Several off-the-shelf probiotic preparations that includeBifidobacteriumstrains also drove intestinal Th17 cell accumulation.
APA, Harvard, Vancouver, ISO, and other styles
5

Vermehren, Cláudia Almeida Alves, and Tayna Ofelia Freitas Suarez. "Symbiosis in the microbiome of people with asd and its effects on the brain-intestine linkage." Research, Society and Development 11, no. 17 (December 20, 2022): e49111736735. http://dx.doi.org/10.33448/rsd-v11i17.36735.

Full text
Abstract:
Researches show that individuals with Autistic Spectrum Disorder (ASD), present an imbalance in the intestinal microbiota, by the study carried out, there is a possibility of mitigating the characteristic symptoms of Autistic Spectrum Disorder, through the symbiosis in the intestinal microbiome. The objective of this bibliographic review is to analyze the influence of symbiosis on the microbiome in the intestine-brain axis in individuals with ASD and to verify the nutritional needs of this individual, in order to support nutritional strategies. Analyzing the gut-brain axis of children with ASD, verifying the effects of symbiosis on the microbiome and the nutritional needs of autistic people. The approach of this research was qualitative, with a basic purpose, of an observational nature, being cross-sectional bibliographic research. Studies were used to investigate the effectiveness of vitamin and mineral supplementation in the diet of children with autism spectrum disorder. The present study concludes that autistic children are more deficient in the intake of vitamins and minerals, and those who are supplemented with vitamin D had reduced or absent symptoms of ASD. Thus, it will be necessary to offer a greater variety of fruits and vegetables to obtain adequate dosages of micronutrients through food intake, helping with homeostasis in the microbiota in order to achieve a symbiosis in the intestinal microbiome of the child with ASD.
APA, Harvard, Vancouver, ISO, and other styles
6

Takahashi, Kyoko, Yutaka Sugi, Kou Nakano, Masato Tsuda, Kenta Kurihara, Akira Hosono, and Shuichi Kaminogawa. "Epigenetic Control of the Host Gene by Commensal Bacteria in Large Intestinal Epithelial Cells." Journal of Biological Chemistry 286, no. 41 (August 23, 2011): 35755–62. http://dx.doi.org/10.1074/jbc.m111.271007.

Full text
Abstract:
Intestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. We have previously reported that the hyporesponsiveness of a human IEC line to LPS was primarily the result of a down-regulation of TLR4 gene transcription through epigenetic mechanisms. In the present study we show that DNA methylation in the 5′ region of the TLR4 gene is significantly higher in IECs than in splenic cells in vivo. The methylation was shown to be dependent on the differentiation state of the IECs, as the differentiated IEC population that expressed higher levels of intestinal alkaline phosphatase (IAP) also displayed greater methylation and lower expression of the TLR4 gene than the undifferentiated population. The IAPhigh, differentiated population also showed less abundant expression of CDX2, the transcription factor required for the development of the intestine, than the IAPlow, undifferentiated population. Overexpression of CDX2 in an IEC line decreased the methylation level of the TLR4 gene, increased transcriptional promoter activity of the gene, and increased responsiveness to the TLR4 ligand. Furthermore, the methylation level of the TLR4 gene was significantly lower in IECs of the large intestine of germ-free mice than in those of conventional mice, whereas the level in IECs of the small intestine was almost equal between these mice, indicating that commensal bacteria contribute to the maintenance of intestinal symbiosis by controlling epigenetic modification of the host gene in the large intestine.
APA, Harvard, Vancouver, ISO, and other styles
7

Kolopp-Sarda, Marie-Nathalie. "Système immunitaire muqueux et microbiote intestinal : Histoire d’une symbiose." Revue Francophone des Laboratoires 2016, no. 484 (July 2016): 39–47. http://dx.doi.org/10.1016/s1773-035x(16)30222-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franke, Maximilian, Benedikt Geier, Jörg U. Hammel, Nicole Dubilier, and Nikolaus Leisch. "Coming together—symbiont acquisition and early development in deep-sea bathymodioline mussels." Proceedings of the Royal Society B: Biological Sciences 288, no. 1957 (August 18, 2021): 20211044. http://dx.doi.org/10.1098/rspb.2021.1044.

Full text
Abstract:
How and when symbionts are acquired by their animal hosts has a profound impact on the ecology and evolution of the symbiosis. Understanding symbiont acquisition is particularly challenging in deep-sea organisms because early life stages are so rarely found. Here, we collected early developmental stages of three deep-sea bathymodioline species from different habitats to identify when these acquire their symbionts and how their body plan adapts to a symbiotic lifestyle. These mussels gain their nutrition from chemosynthetic bacteria, allowing them to thrive at deep-sea vents and seeps worldwide. Correlative imaging analyses using synchrotron-radiation based microtomography together with light, fluorescence and electron microscopy revealed that the pediveliger larvae were aposymbiotic. Symbiont colonization began during metamorphosis from a planktonic to a benthic lifestyle, with the symbionts rapidly colonizing first the gills, the symbiotic organ of adults, followed by all other epithelia of their hosts. Once symbiont densities in plantigrades reached those of adults, the host's intestine changed from the looped anatomy typical for bivalves to a straightened form. Within the Mytilidae, this morphological change appears to be specific to Bathymodiolus and Gigantidas , and is probably linked to the decrease in the importance of filter feeding when these mussels switch to gaining their nutrition largely from their symbionts.
APA, Harvard, Vancouver, ISO, and other styles
9

Hagymási, Krisztina, Anna Bacsárdi, Anna Egresi, Evelin Berta, Zsolt Tulassay, and Gabriella Lengyel. "A bélflóra patofiziológai jelentősége és szerepe mint terápiás célpont májbetegségekben." Orvosi Hetilap 159, no. 36 (September 2018): 1465–74. http://dx.doi.org/10.1556/650.2018.31178.

Full text
Abstract:
Abstract: The community of microorganisms in the intestine, namely gut microbiome lives in symbiosis with the host, contributing to its homeostasis and influencing it simultaneously. It can be suspected that gut microbiome plays a central role in the pathophysiology of intestinal and extraintestinal diseases: determining their development, progress and complications. Recently, intestinal microbiome has become a highlighted field of interest and important topic in research, especially in hepatology. It is in the focus of relevant research as the liver is the organ which meets nutrients, bacterial components, toxins and metabolites at first, as a filter. The evolvement of different liver diseases – just like alcoholic and non-alcoholic fatty liver disease, steatohepatitis, cirrhosis or hepatocellular carcinoma – correlates with the changed composition and activity of gut microbiome. Thus, it can be hypothesized that pre-, pro- and antibiotics could have an impact on the treatment of these diseases. In our review article, the relationship between intestinal flora and liver diseases with different etiologies as well as therapeutic possibilities are discussed. Orv Hetil. 2018; 159(36): 1465–1474.
APA, Harvard, Vancouver, ISO, and other styles
10

Lindner, Cornelia, Benjamin Wahl, Lisa Föhse, Sebastian Suerbaum, Andrew J. Macpherson, Immo Prinz, and Oliver Pabst. "Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine." Journal of Experimental Medicine 209, no. 2 (January 16, 2012): 365–77. http://dx.doi.org/10.1084/jem.20111980.

Full text
Abstract:
Intestinal immunoglobulin A (IgA) ensures host defense and symbiosis with our commensal microbiota. Yet previous studies hint at a surprisingly low diversity of intestinal IgA, and it is unknown to what extent the diverse Ig arsenal generated by somatic recombination and diversification is actually used. In this study, we analyze more than one million mouse IgA sequences to describe the shaping of the intestinal IgA repertoire, its determinants, and stability over time. We show that expanded and infrequent clones combine to form highly diverse polyclonal IgA repertoires with very little overlap between individual mice. Selective homing allows expanded clones to evenly seed the small but not large intestine. Repertoire diversity increases during aging in a dual process. On the one hand, microbiota-, T cell–, and transcription factor RORγt–dependent but Peyer’s patch–independent somatic mutations drive the diversification of expanded clones, and on the other hand, new clones are introduced into the repertoire of aged mice. An individual’s IgA repertoire is stable and recalled after plasma cell depletion, which is indicative of functional memory. These data provide a conceptual framework to understand the dynamic changes in the IgA repertoires to match environmental and intrinsic stimuli.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Symbiose intestinale"

1

Fadlallah, Jehane. "Impact du déficit en IgA sur la symbiose hôte/microbiote intestinal chez l'homme." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066740/document.

Full text
Abstract:
Le système immunitaire muqueux, et plus particulièrement les réponses intestinales IgA sont essentielles non seulement à la défense contre les agents pathogènes, mais aussi au façonnement de la flore intestinale commensale. Dans les modèles murins de déficit en IgA, on observe une dysbiose intestinale majeure associée à une inflammation muqueuse, réversibles après restauration des IgA. Le but de ce travail est de décrire l'impact de l'absence d'IgA chez l'homme sur la composition du microbiote intestinal ainsi que ses conséquences locales et systémiques. L'étude comparative par analyse métagénomique des selles de 17 sujets déficitaires en IgA et de 34 donneurs sains retrouve l'absence de différence majeure en termes de répartition des phyla dominants, de diversité et de richesse génique bactériennes entre les deux groupes. En revanche, en analysant à l'échelon des espèces, on observe dans le déficit en IgA une surreprésentation d'espèces pro-inflammatoires et une sous-représentation d'espèces anti-inflammatoires. En outre, en l'absence d'IgA, nous observons la présence de réponses IgM qui opsonisent partiellement les genres ciblés par l'IgA, mais semblent maintenir la diversité au sein des Actinobactéries. Les patients présentent un biais phénotypique lymphocytaire T circulant (TH17) associé à des stigmates de translocation bactérienne. Enfin, l'absence d'IgA s'associe à une perturbation du réseau bactérien minimal "obligatoire". Ces résultats suggèrent que le déficit en IgA humain s'accompagne d'une dysbiose modérée associée à une altération de l'architecture du réseau bactérien induisant une hyperactivation du système immunitaire, malgré la présence de réponses IgM
IgA responses play a key role in gut mucosa, defending host against pathogens but also shaping the commensal flora. In order to get insights into the specific contributions of IgA to host/microbial symbiosis in humans, we explored patients that lack only IgA, using gut microbial metagenomics and systems immunology. Microbiota composition was compared between 34 healthy controls and 17 selective IgA deficiency (sIgAd) patients. Contrary to what was observed in murine models of IgA deficiency, we show that human sIgAd is not associated with massive perturbations of gut microbial ecology, regarding phyla distribution, bacterial diversity and gene richness. A clear gut microbial signature is however associated to sIgAd: we found 19 over-represented MGS mainly described to be pro-inflammatory, but also 14 under-represented MGS, mainly known to be beneficial. We also explored local consequences of IgA deficiency, particularly whether IgM could replace IgA at host/bacterial interface. Using a combination of bacterial flow sorting and DNA sequencing, we therefore analysed the composition of IgM-coated microbiomes observed in sIgAd. We show that IgM only partially supply IgA deficiency, as not all typical IgA targets can also be opsonized by IgM, but nevertheless contribute to maintain Actinobacteria diversity. IgA deficiency is associated with a skewed circulating CD4+ T cell profile towards TH17, as well as markers of bacterial translocation. Finally, sIgAd is associated with a perturbation of the minimal bacterial network. Altogether our results suggest that human IgA deficiency is associated with a mild dysbiosis associated to systemic inflammation despite the presence of IgM
APA, Harvard, Vancouver, ISO, and other styles
2

Lextrait, Gaëlle. "The Coreoidea-Caballeronia gut symbiosis : specificity and bacterial fitness determinants." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB029.

Full text
Abstract:
La stabilité évolutive des relations hôte-microbe est cruciale pour la symbiose. La transmission verticale des symbiotes microbiens des parents à la progéniture est bien établie, mais l'acquisition environnementale par transmission horizontale de symbiotes nécessite des adaptations spécifiques. Les insectes de l'infra-ordre Pentatomomorpha disposent d'un mécanisme efficace pour l'acquisition de leur symbiote à partir du sol. Ces insectes possèdent une architecture intestinale distinctive contenant une région postérieure, appelée M4, composée de centaines de cryptes, constituant une niche spécifique pour abriter des symbiotes intestinaux bénéfiques. Les Coreoidea sélectionnent spécifiquement des bactéries Caballeronia. Ma thèse explore la spécificité de cette association et les mécanismes bactériens sous-jacents. Trois espèces de Coreoidea (Riptortus pedestris, Leptoglossus occidentalis, Coreus marginatus) montrent une préférence pour des sous-clades spécifiques de Caballeronia, influencée par la compétition interspécifique. La région M4 est dominée par une seule espèce bactérienne, suggérant une forte pression de sélection. La spécificité de la souche est alignée avec un avantage en termes de fitness reproductif. Des criblages génétiques ont révélé des fonctions cruciales pour la colonisation des cryptes, notamment le chimiotactisme, la résistance aux peptides antimicrobiens et de la capacité à utiliser des sources de carbone néoglucogéniques, la taurine et l'inositol, suggérant que l'hôte fournit ce type de métabolites comme nutriments aux symbiotes. Ces découvertes démontrent que malgré une grande diversité microbienne environnementale, les insectes sélectionnent des symbiotes spécifiques grâce à des mécanismes multifactoriels
The evolutionary stability of host-microbe relationships is crucial for symbiosis. Vertical transmission of microbial symbionts from parents to offspring is well established, but environmental acquisition through horizontal transmission of symbionts requires specific adaptations. Insects of the infraorder Pentatomomorpha have an effective mechanism for acquiring their symbionts from the soil. These insects possess a distinctive intestinal architecture with a posterior region called M4, composed of hundreds of crypts that provide a specific niche for harboring beneficial gut symbionts. Coreoidea specifically select Caballeronia bacteria. My thesis explores the specificity of this association and the underlying bacterial mechanisms. Three species of Coreoidea (Riptortus pedestris, Leptoglossus occidentalis, Coreus marginatus) show a preference for specific subclades of Caballeronia, influenced by interspecific competition. The M4 region is dominated by a single bacterial species, suggesting strong selective pressure. Strain specificity is aligned with a reproductive fitness advantage. Genetic screenings revealed crucial functions for crypt colonization, including chemotaxis, resistance to antimicrobial peptides, and the ability to utilize neoglucogenic carbon sources such as taurine and inositol, suggesting that the host provides these metabolites as nutrients to the symbionts. These findings demonstrate that despite high environmental microbial diversity, insects select specific symbionts through multifactorial mechanisms
APA, Harvard, Vancouver, ISO, and other styles
3

Jouan, Romain. "The fitness landscape of the soil bacteria Caballeronia insecticola and Sinorhizobium meliloti in diverse natural and synthetic environments." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASB076.

Full text
Abstract:
Les bactéries du sol sont adaptées pour survivre dans ce milieu et pour faire face à divers organismes y vivant, comme d'autres bactéries, champignons, plantes et insectes. Pour mieux connaitre ces adaptations et comprendre si ces adaptations se chevauchent ou sont spécifiques à chacun de ces modes de vie, j'ai utilisé l'approche dites « Transposon sequencing » (Tn-seq) pour identifier les gènes essentiels et conditionnellement essentiels dans deux bactéries du sol bien connues, Caballeronia insecticola et Sinorhizobium meliloti. J'ai utilisé des cribles Tn-seq réalisés dans les milieux naturels des microbes (in situ), combinés à des expériences in vitro. La sélection des conditions in vitro a été guidée par des analyses transcriptomiques, des études physiologiques, la génétique, la génomique et des analyses biochimiques, ainsi que par les expériences Tn-seq in situ. Ces conditions in vitro consistent en plusieurs facteurs de stress (comme des peptides antimicrobiens ou AMP) ou de conditions nutritionnelles (panel de sources de carbone, d'azote et de soufre) et physiologiques (motilité et chimiotaxie) que les microbes rencontrent dans leurs milieux naturels. Ces conditions in vitro simplifiées décomposent les conditions naturelles en composants uniques et facilitent ainsi l'interprétation des cribles Tn-seq in situ. C. insecticola est une bactérie polyvalente qui établit des interactions spécifiques avec des insectes, des plantes, des champignons et d'autres bactéries. J'ai analysé quatre modes de vie différents de C. insecticola avec l'approche Tn-seq : le sol, la rhizosphère des plants de soja, l'organe symbiotique intestinal de l'insecte Riptortus pedestris et la surface des hyphes des champignons Cunninghamella. Pour les interactions bactéries-bactéries, je me suis concentré sur la compétition entre la souche de rhizobium S. meliloti et la souche productrice de toxines Rhizobium sp. Pop5, car cette interaction est bien caractérisée et repose sur la production du AMP phazolicine par la souche Pop5.Au total, 34 cribles chez C. insecticola et 4 cribles chez S. meliloti ont été réalisés et analysés, ce qui a permis de découvrir des phénotypes pour 1 162 gènes de C. insecticola et 264 gènes de S. meliloti. Chez C. insecticola, le génome essentiel, c'est-à-dire l'ensemble des gènes qui ne peuvent être supprimés et qui sont donc indispensables à la vie bactérienne, a été défini. Il est constitué de 498 gènes, avec des gènes codant des fonctions cellulaires attendues, comme la transcription, la traduction, la production d'énergie, la biosynthèse de l'enveloppe cellulaire et le cycle cellulaire, ou des gènes moins attendus comme ceux impliqués dans la modification spécifique de la partie lipidique A du lipopolysaccharide avec des groupes 4-amino-4-désoxy-L arabinose. Les résultats des différents cribles ont été vérifiés en utilisant des mutants d'insertion ou de délétion de C. insecticola et S. meliloti et en caractérisant leur phénotype dans les conditions in situ et in vitro appropriées. Au total, 23 mutants de C. insecticola et 8 mutants de S. meliloti ont été phénotypés. Dans chaque cas, le phénotypage de ces mutants a confirmé les données Tn-seq, illustrant la robustesse et le potentiel de la méthode.Parmi les fonctions bactériennes cruciales dans tous les milieux naturels, tant chez C. insecticola que chez S. meliloti, figure l'enveloppe bactérienne, ce qui suggère qu'elle constitue un bouclier contre les agressions environnementales, comme les AMPs fréquemment produits par d'autres organismes. La motilité bactérienne et la chimiotaxie chez C. insecticola sont cruciales dans l'interaction avec les insectes et dans le sol, lorsque les bactéries circulent sur les hyphes fongiques. Enfin, chaque milieu impose des contraintes métaboliques spécifiques aux bactéries. Ces travaux ont mis en évidence des adaptations à la fois généralistes et spécifiques à l'environnement chez les bactéries du sol
Soil bacteria are adapted to survive in their abiotic soil environment as well as to cope with different organisms, including other bacteria, fungi, plants and insects with which they share that environment. With the objective to contribute to the understanding of these adaptations and to answer the question if adaptations are overlapping or unique for each of these lifestyles, I used the transposon-sequencing (Tn-seq) approach to identify essential and conditionally fitness genes in two well-studied soil bacteria, Caballeronia insecticola and Sinorhizobium meliloti. The experimental strategy consisted in the use of Tn-seq screens performed in the natural, in situ environments of the microbes combined with multiple in vitro experiments in synthetic environments. The selection of these in vitro conditions was informed by available transcriptome analyses, physiological studies, genetics, genomics and biochemical analyses as well as the in situ Tn-seq experiments themselves. The selected in vitro conditions were a variety of stressors (e.g. antimicrobial peptides or AMPs) or nutritional (e.g. a panel of carbon, nitrogen and sulphur sources) and physiological (e.g. motility and chemotaxis) conditions that the microbes encounter in their natural environments. These simplified synthetic conditions decompose the complexity of natural conditions in single components and facilitate thereby the interpretation of the in situ Tn-seq screens.C. insecticola is a versatile bacterium establishing specific interactions with insects, plants, fungi and other bacteria. I analyzed four different lifestyles of C. insecticola with the Tn-seq approach: soil, the rhizosphere of soybean plants, the gut symbiotic organ of the insect Riptortus pedestris and the surface of the hyphae of Cunninghamella fungi. For bacteria-bacteria interactions, I focused on the competition of the rhizobium strain S. meliloti with the toxin producing strain Rhizobium sp. Pop5 because this interaction is well characterized and based on the production of the AMP phazolicin by the strain Pop5.In total, 34 screens in C. insecticola and 4 screens in S. meliloti were performed and analysed, resulting in the discovery of phenotypes for 1162 C. insecticola genes and 264 S. meliloti genes. In C. insecticola, the essential genome, i.e. the set of genes that cannot be removed and that are therefore indispensable to support bacterial life, was precisely defined. I found that it is constituted of 498 genes, including the genes encoding the expected cellular functions, like transcription, translation, energy production, cell envelope biosynthesis and cell cycle, but also less expected genes like those involved in the specific modification of the lipid A moiety of lipopolysaccharide with 4-amino-4-deoxy-L arabinose groups. Results of the different Tn-seq screens were verified by independent experiments, using insertion or deletion mutants of C. insecticola and S. meliloti in selected genes and characterization of the phenotype of these mutants in the relevant environmental and in vitro conditions. In total, 23 mutants in C. insecticola and 8 mutants in S. meliloti were phenotyped. In each case, the phenotyping of these mutants confirmed the Tn-seq data, illustrating the robustness and potential of the method.Among the crucial bacterial functions in all natural environments, in both C. insecticola and S. meliloti, is the bacterial envelope, suggesting that it constitutes a shield, fending of environmental stresses, in particular AMPs frequently produced by other organisms. Bacterial motility and chemotaxis in C. insecticola are particularly important in the interaction with insects but also in the soil, when bacteria hitchhike on fungal hyphae. Finally, each environment imposes specific metabolic constraints on the bacteria. Together, this work highlighted both generalist and environment-specific adaptations in soil bacteria
APA, Harvard, Vancouver, ISO, and other styles
4

Michaud, Caroline. "Dynamique des symbioses mutualistes hôtes-microbiotes : mode et efficacité de transmission des symbiotes dans les populations du termite xylophage Reticulitermes grassei." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4027.

Full text
Abstract:
Les symbioses mutualistes sont ubiquistes et jouent un rôle majeur dans le fonctionnement des écosystèmes. Chez les insectes, il est souvent décrit que la spécificité et la stabilité évolutive de ces symbioses mutualistes est due à une transmission verticale stricte des symbiotes des parents à la descendance. Pour tester le rôle de la transmission verticale dans le maintien évolutif des symbioses mutualiste, son exclusivité et son efficacité doivent être étudiées à une échelle évolutive (d’une lignée hôte à une autre) ainsi qu’à une échelle écologique (d’une génération à la suivante). Ce projet de thèse a pour but d’étudier la transmission verticale comme mécanisme de stabilisation évolutive dans les associations nutritionnelles entre les termites souterrains du genre Reticulitermes et leurs symbiotes mutualistes intestinaux. Pour cela, des outils de biologie moléculaire ont été développés afin d’étudier la diversité et la composition de la communauté microbienne intestinale totale des termites (approche de méta-code barre), mais également en se focalisant sur les protistes du genre Trichonympha qui jouent un rôle essentiel dans la dégradation de la lignocellulose (approches de barcoding ADN et de PCR quantitative). Le premier axe de cette thèse vise à étudier les patterns de transmission des symbiotes à l’échelle évolutive du genre Reticulitermes en testant l’hypothèse que la phylogénie de l’hôte est un facteur majeur expliquant la composition du microbiote intestinal des termites. L’étude menée sur les Trichonympha de termites a permis de montrer que la diversification de ces associations n’est pas uniquement expliquée par des événements de co-spéciation, mais que des événements de changement d’hôte et de perte de symbiotes ont eu lieu. L’étude menée sur l’ensemble du microbiote intestinal des termites permettra de déterminer ces patterns de diversification sur l’ensemble des taxa microbiens. Le second axe de cette thèse est d’évaluer le niveau de fidélité entre partenaires à une échelle intergénérationnelle en testant l’hypothèse que la transmission verticale des symbiotes est stricte d’une génération à une autre. L’efficacité de la transmission verticale a été mesurée en deux étapes : (i) en comparant les symbiotes présents dans les ouvriers de la colonie avec ceux portés par les reproducteurs primaires (i.e. les alates) lorsqu’ils quittent leur colonie natale pour en fonder une nouvelle, et (ii) en comparant les symbiotes présents dans les ouvriers des deux colonies parentales avec ceux portés par la nouvelle colonie fondée. Les résultats préliminaires de l’étude sur les deux Trichonympha présents chez R. grassei semblent indiquer qu’ils sont co-transmis dans les alates. L’étude sur l’ensemble du microbiote intestinal permettra de déterminer si tous les taxa microbiens sont co-transmis ou si une transmission aléatoire des symbiotes a lieu dans les alates. Une troisième étude sur l’ensemble du microbiote permettra de déterminer si tous les taxa microbiens sont transmis par les parents à la descendance. Ensemble, ces différentes études permettront de tester la transmission verticale comme mécanisme induisant une fidélité entre partenaires dans les systèmes termitesmicrobiote intestinal. A l’échelle des protistes du genre Trichonympha, ce mécanisme ne semble pas le seul impliqué dans la stabilité évolutive de ces associations
Many animals including humans live in symbiotic interaction with gut microorganisms contributing to essential functions (nutrition, immunity). The ‘vertical’ way of transmission of symbionts (i.e., from parents to offspring) must stabilise these symbioses, notably by strengthening partner fidelity. However, the efficiency of vertical transmission has rarely been studied, especially in the case where hosts harbour a complex microbial community (or ‘microbiota’) composed by many microbial taxa interacting between them and with the host.The objective of this work was to study the mode and efficiency of transmission of gut microorganisms (protists and bacteria) helping the wood-feeding termite Reticulitermes grassei to digest ingested wood (lignocellulose fibres). Our results revealed contrasted situations between microorganisms. While protists are efficiently vertically transmitted, the majority of bacterial taxa is not only vertically transmitted but seems to be acquired by the environment
APA, Harvard, Vancouver, ISO, and other styles
5

Peruchi, Aline. "Caracterização e avaliação do potencial de aplicação bioindustrial da bacteriofauna intestinal de Armitermes euamignathus Silvestri, 1901 (Isoptera: Termitidae) e Coptotermes gestroi (Wasmann, 1896) (Isoptera: Rhinotermi." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/11/11146/tde-16122013-172059/.

Full text
Abstract:
Microrganismos simbiontes são essenciais para a exploração de dietas de baixo valor nutricional, o desenvolvimento, crescimento e a reprodução de seus hospedeiros. Insetos que se alimentam de dieta rica em materiais celulósicos, como é o caso de cupins, apresentam protozoários e/ou bactérias associadas ao trato digestivo que auxiliam na quebra do polímero de celulose e na fixação de nitrogênio. A celulose e a hemicelulose são polímeros estruturais formados por unidades de glicose, sendo a hidrólise desses polímeros de grande interesse industrial para a produção de etanol. O modo mais eficiente de hidrolisar a celulose é pelo uso de enzimas, as celulases. Os cupins apresentam grande eficiência na digestão de celulose e hemicelulose, sendo que a compreensão do processo de digestão de celulose por esses insetos pode facilitar o desenvolvimento de tecnologia mais eficiente para a quebra desse polímero. Assim, este trabalho buscou i) isolar, identificar e caracterizar microrganismos associados ao trato digestivo dos cupins Armitermes euamignathus (Isoptera: Termitidae) e Coptotermes gestroi (Isoptera: Rhinotermitidae); ii) verificar o potencial da microbiota na degradação dos principais componentes da lignocelulose (celulose, xilana e pectina); iii) caracterizar o potencial hidrolítico e determinar as condições ótimas de hidrólise (pH e temperatura das diferentes enzimas produzidas). A análise da microbiota cultivável levou à identificação de 14 filotipos para A. euamignathus e de 11 para C. gestroi, distribuídos nos quatro principais filos, Proteobacteria, Firmicutes, Bacteroidetes e Actinobacteria. A caracterização da microbiota não-cultivável levou à identificação de 17 filotipos em operários e três em soldados de A. euamignathus, enquanto que em C. gestroi foi possível identificar seis filotipos em operários e oito em soldados. O filo Firmicutes foi o mais abundante em A. euamignathus, enquanto Proteobacteria predominou em C. gestroi. O isolamento de bactérias em meio seletivo para degradação de celulose, xilana ou pectina levou à seleção de oito filotipos para A. euamignathus e cinco para C. gestroi. Extratos brutos obtidos do cultivo dessas bactérias apresentaram atividade de hidrólise de pectina e xilana, mas não celulose. Ensaios para otimização das reações de degradação indicaram a presença de enzimas que atuam em diferentes faixas de pH ótimo. Assim, a microbiota associada aos cupins estudados foi bastante diversa, apresentando ainda diferenças entre as diferentes castas desses insetos. Essa microbiota também atua em parte do processo de degradação da celulose, demonstrando o potencial que bactérias associadas ao intestino de cupins podem apresentar para a identificação de enzimas digestivas que possam ser utilizadas no processamento da celulose.
Symbionts are essential for insect hosts as they enhance the nutritional value of their host diets and support host development, growth and reproduction. Insects that feed on diets rich in cellulose, such as termites, exhibit protozoa and/or bacteria within their digestive tract that aid in breaking the cellulose and in nitrogen fixation. Cellulose and hemicellulose are polymers formed by units of glucose, and the hydrolysis of these polymers is of great industrial interest for the production of ethanol. Cellulases are the most efficient enzymes to break cellulose. Termites have a huge capacity to digest cellulose and hemicellulose; thefore, understanding the process by which they digest cellulose may allow the development of more suitable technologies devoted to the industrial utilization of cellulose. This work aimed to i) isolate, identify and characterize microorganisms associated with the digestive tract of Armitermes euamignathus (Isoptera: Termitidae) and Coptotermes gestroi (Isoptera: Rhinotermitidae), ii) investigate the potential of symbionts in the degradation of the main components of lignocellulose (cellulose, xylan and pectin); iii) characterize the hydrolytic potential and determine the optimum hydrolysis conditions (pH and temperature) for the different enzymes produced. The analysis of culturable microorganisms led to the identification of 14 phylotypes for A. euamignathus and 11 for C. gestroi, which were distributed in four Phyla, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. The characterization of the non-culturable microbiota led to the identification of 17 phylotypes in workers and three in soldiers of A. euamignathus, while six phylotypes were identified in workers and eight in soldiers of C. gestroi. Firmicutes was the most abundant in A. euamignathus, while Proteobacteria predominated in C. gestroi. The isolation of bacteria in selective medium to degrade cellulose, xylan or pectin led to the selection of eight phylotypes from A. euamignathus and five from C. gestroi. Crude extracts obtained from the cultivation of these bacteria showed hydrolytic activity towards to xylan and pectin, but not cellulose. Assays for optimization of enzymatic reaction indicated the presence of enzymes that act at different pH ranges great. As a conclusion, symbiont diversity was quite different between the termites species and in between the castes of these species. But the microbiota isolated also acts in the degradation of cellulose, demonstrating the potential for the gut-associated bacteria of termites may present for the identification of digestive enzymes which can be used in the processing of cellulose.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Symbiose intestinale"

1

Vitapole, Danone, ed. The intestinal microflora, understanding the symbiosis. Montrouge: J. Libbey Eurotext, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Symbiose intestinale"

1

Weiner, R., and W. Hartig. "Postoperative Intestinal Absorption." In Die Chirurgie und ihre Spezialgebiete Eine Symbiose, 648. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-95662-1_298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kloc, Malgorzata, Ahmed Uosef, Mahmoud Elshawwaf, Ahmed Adel Abbas Abdelshafy, Kamal Mamdoh Kamal Elsaid, Jacek Z. Kubiak, and Rafik Mark Ghobrial. "The Macrophages and Intestinal Symbiosis." In Results and Problems in Cell Differentiation, 605–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51849-3_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hackstein, J. H. P., and P. Langer. "Intestinal Methanogens and Vertebrate Evolution: Symbiotic Archaea are Key Organisms in the Differentiation of the Digestive Tract." In Eukaryotism and Symbiosis, 501–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60885-8_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paracer, Surindar, and Vernon Ahmadjian. "Introduction." In Symbiosis, 3–14. Oxford University PressNew York, NY, 2000. http://dx.doi.org/10.1093/oso/9780195118063.003.0001.

Full text
Abstract:
Abstract Symbiosis is an association between two or more different species of organisms. The association may be permanent, the organisms never being separated, or it may be long lasting. This definition excludes populations, which are associations between individuals of the same species. Organisms that are involved in a symbiosis may benefit from, be harmed by, or not be affected by the association. Symbiotic associations are common in nature, from bacteria and fungi that form close alliances with the roots of terrestrial plants to those between giant tube worms and sulfur-oxidizing bacteria that live together in the deepest depths of the oceans. No organism is an island-each one has a relationship to other organisms, directly or indirectly. Even humans bear a reminder of an ancient symbiosis-their cells contain mitochondria, organelles which once were symbiotic bacteria. In addition, each of us harbors several types of viruses and bacteria in our skin and intestinal tract. Similarly, chloroplasts in plant cells are organelles which have evolved from ancient symbiotic photosynthetic bacteria. Bactmia which form symbioses with higher forms of life are themselves hosts to symbiotic viruses. Satellite viruses depend on other viruses for their expression. It is difficult to imagine life and its evolutionary history without symbioses (Khakhina, 1992; Sapp, 1994a,b).
APA, Harvard, Vancouver, ISO, and other styles
5

Severus Gaspar, Bogdan, Monica Profir, Oana Alexandra Rosu, Ruxandra Florentina Ionescu, and Sanda Maria Cretoiu. "The Intestinal Microbiome in Humans: Its Role for a Healthy Life and in the Onset of Diseases." In Physiology. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.113719.

Full text
Abstract:
The discovery of human microbiota shed a different perspective regarding human homeostasis and immune regulation. Gut microbiota comprises a multitude of microorganisms, its composition being host-specific and evolving throughout the lifetime, being subjected to both endogenous and exogenous factors. This subject gained significant interest after the improvement of metagenomic and metabolomic studies. The gut microbiome displays several roles, such as modulating gut permeability, digestive processes, metabolic pathways, and immune responses. Any dysregulation in the complex symbiosis mechanism between humans and the intestinal microbiome might lead to variable diseases. Environmental factors and diet play a very important role in maintaining a healthy gut microbiota. In this chapter, one aims to discuss the core microbiome of healthy subjects and how different stages of dysbiosis can play a role in the initiation and progression of pathogenic mechanisms leading to several diseases, such as gastrointestinal disorders (irritable bowel syndrome, inflammatory bowel diseases, infections or diarrhea associated with antibiotics, and colon cancer), metabolic disorders, obesity, diabetes, and allergies. We underline the importance of diet and environmental factors in modulating gut microorganism concentrations. We shed light on new possible perspectives regarding the modulation of gut microbiota for improving the health status of the host.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Symbiose intestinale"

1

Kawahara, Mitsuki, Shun Itai, and Hiroaki Onoe. "Tube-Shaped In-Vitro Intestinal Gut Model with 3D Isotropic Medium Supply for Bacterial Symbiosis." In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). IEEE, 2022. http://dx.doi.org/10.1109/mems51670.2022.9699523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography