Academic literature on the topic 'Swirling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Swirling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Swirling"

1

Iguchi, Manabu, Daisuke Iguchi, Yasushi Sasaki, and Shinichiro Yokoya. "FUNDAMENTAL CHARACTERISTICS OF SWIRLING JETS IN CYLINDRICAL VESSEL(Swirling Flow and Separation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 691–95. http://dx.doi.org/10.1299/jsmeicjwsf.2005.691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Iguchi, Manabu, Moriyoshi Shitara, Daisuke Iguchi, Yasushi Sasaki, and Shinichiro Yokoya. "PRACTICAL APPLICATIONS OF SWIRLING JETS TO MIXING PROCESSES(Swirling Flow and Separation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 697–701. http://dx.doi.org/10.1299/jsmeicjwsf.2005.697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brecher, Mark E., and Shauna N. Hay. "Platelet swirling." Transfusion 44, no. 5 (April 26, 2004): 627. http://dx.doi.org/10.1111/j.1537-2995.2004.03428.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Congcong. "Swirling swimmer." Nature Nanotechnology 14, no. 7 (July 2019): 638. http://dx.doi.org/10.1038/s41565-019-0509-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watts, Abhishek, and Sandeep K. Gupta. "Swirling Fat." Journal of Pediatric Gastroenterology and Nutrition 63, no. 6 (December 2016): e204. http://dx.doi.org/10.1097/mpg.0000000000000745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mantoura, Samia. "Cyclonic swirling." Nature Climate Change 1, no. 707 (June 27, 2007): 18. http://dx.doi.org/10.1038/climate.2007.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Musser, George. "Swirling Dust." Scientific American 286, no. 1 (January 2002): 23. http://dx.doi.org/10.1038/scientificamerican0102-23b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zeng, Jie, Zhi Yan Hou, and Hao Zeng Jiang. "The Numerical Simulation of Swirling Airflow Field for Different Swirling Airflow Head in Swirling Airflow Finishing." Applied Mechanics and Materials 678 (October 2014): 582–86. http://dx.doi.org/10.4028/www.scientific.net/amm.678.582.

Full text
Abstract:
The key of swirling airflow finishing is how to generate the swirling airflow. In the paper, three swirling airflow head are discussed according the manners of tangential inflow. By means of FLUENT, the general software of CFD, the swirling airflow field from different airflow head is simulated. The simulation results are shown by the flow line graphs, tangential velocity, radial distribution graphs, etc. All we have studied is as the basis for the determination of the application scope of each swirling airflow head.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jian, Qun Zheng, Guoqiang Yue, and Yuting Jiang. "Investigation on flow field and heat transfer characteristics of film cooling with different swirling directions for coolant flow." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235, no. 6 (March 2, 2021): 1394–405. http://dx.doi.org/10.1177/0957650921997633.

Full text
Abstract:
In this paper, a hexagonal prism inlet chamber is used to form a swirling flow for the film cooling, and three kinds of compound angle of film hole ( γ = 10°, 20°, 30°) with clockwise swirling or counterclockwise swirling are used for numerical simulation studies. The influence of different compound angles of film hole and the swirling directions for the film cooling effectiveness are obtained. The results show that the film cooling effectiveness and spanwise cooling coverage range of the clockwise swirling or counterclockwise swirling flow both are low when the compound angle of film hole is 10°. With the increasing compound angle of film hole, the kidney shaped vortex of film hole exit gradually weakens until it disappears, which reduces the entrainment effect by the coolant jet. So that the spanwise coverage range of two swirling modes is obviously improved. When the compound angle of film hole is 30° compared to 10°, the average spanwise film cooling effectiveness of clockwise swirling and counterclockwise swirling are increased by about 133.75 and 212.6%, respectively. The average spanwise film cooling effectiveness on the downstream of film hole for counterclockwise swirling is increased by about 140% compared with clockwise swirling.
APA, Harvard, Vancouver, ISO, and other styles
10

Laszlo, Fuchs. "PS01 SWIRLING PREMIXED FLAME STABILIZATION." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _PS01–1_—_PS01–1_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._ps01-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Swirling"

1

Stokes, Jason R. "Swirling flow of viscoelastic fluids /." Connect to thesis, 1998. http://eprints.unimelb.edu.au/archive/00000686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferguson, John William James. "Swirling flows in conical vessels." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Davidson, P. A. "Magnetohydrodynamics of swirling, recirculating flow." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jones, Lee Nicholas. "Modelling of turbulent swirling flows." Thesis, University of Leeds, 2004. http://etheses.whiterose.ac.uk/1192/.

Full text
Abstract:
This thesis investigates the predictability of non-reacting and reacting anistropic turbulent, swirling flows using popular turbulence models with a robust numrical procedure. The performance of these turbulence models is assessed and compared against experimental data for anisotropic, turbulent swirling flow in a cylindrical pipe and non-reacting and reacting combustion chambers. The transport equations for title k -e and k - w two-equation turbulence models are presented along with the LRR and SSG second-moment closure models for isothermal and variable density flows. The effect of anisotropy in the Reynolds stress dissipation rate tensor is accounted for by the inclusion of an algebraic model for the dissipation anistropy tensor dependent 0n the mean strain and vorticity of the flow. The implementation of the SMART and CUBISTA boundedness preserving, high order accurate convective discretisation schemes is shown to yield superior predictive accuracy compared to previous methods such as Upwinding. The PISO and SIMPLE solution algorithms are employed to provide a robust calculation procedure. The second moment closure models are found to provide increased predictive accuracy compared to those of the two-equation models. Mean flow properties are predicted well, capturing the effects of the swirl in the experimental flow field. The LRR model shows a premature decay of swirl downstream compared to the more accurate predictions of the other models. The effect of dissipation anistropy on the SSG model shows an over-prediction of the turbulent properties in the upstream region followed by premature decay downstream. In the near field of the non-reacting combustion chamber flow, the anisotropic dissipation model corrects the SSG model over-prediction of the veloocities at the central axis. A combined CMC flamelet combustion model is employed alongside the anisotropic dissipation Reynolds stress model to predict the flow field and combustion related properties of the TECFLAM swirl burner. The species mass fractions are conditioned on the mixture fraction to provide an accurate model for the determination of the probability density functions governing the reactions within the turbulent flamelet. The turbulent model shows an ability to provide accurate predictinS for the aerodynamic properties of the flow whilst providing accurate determination of combustion related phenomena alongside the combnstion model. A limitation of the flamelet assumption was identified with the over-prediction of CO due to the larger lengthscales of the oxidation reactions present in such flows.
APA, Harvard, Vancouver, ISO, and other styles
5

Lucca-Negro, Oona. "Modelling of swirling flow instabilities." Thesis, Cardiff University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310677.

Full text
Abstract:
This research concentrates on the swirl motion, and in particular the flow structure which develops under its action, in swirl burner/furnace systems. Although the Reynolds numbers for such systems are usually large and well into the turbulent regime, periodic oscillations and associated instabilities are still prevalent. The predominant coherent structure is the so-called precessing vortex core (PVC) which is a three-dimensional, time-dependent phenomenon. It is helical in shape, twisted against the flow, and precesses around the geometric centre of the system, in the sense of the flow. The aim of this work was to numerically model this instability in a 2MW industrial-size system, under isothermal conditions. A fully three-dimensional, time-dependent model was developed using the CFD (Computational Fluid Dynamics) software FLUENT. This study first presents an overview of publications on vortex breakdown, a similar phenomenon observed initially on delta wings, in order to highlight its significant features. A summary was also made of various recent studies, experimental and theoretical, carried out at Cardiff University, in the same equipment as used in the present work. This review allows a better understanding of the phenomenon and constitutes a basis for further validation of the mathematical model. Numerous flow pattern characteristics have- been predicted, which agree qualitatively with different published studies, such as crescent shaped regions of maximum axial and tangential velocities, off-centred reverse flow zone, and spiralling vortex core. Quantitatively, the agreement is good, in terms of range of velocities and frequency. However, the predicted flow pattern could. not be maintained in time and tended back to axisymmetry, possibly due to numerical diffusion. Grid refinement could not, however, be envisaged due to the practical limits of the available machines. Nevertheless, these results are encouraging and prove that mathematical modelling of these complex flows is a realistic objective.
APA, Harvard, Vancouver, ISO, and other styles
6

Heaton, Christopher James. "Acoustics and stability in swirling flow." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/272161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quaranta, Hugo. "Instabilities in a swirling rotor wake." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0052.

Full text
Abstract:
Cette thèse est consacrée à l'étude des instabilités du sillage tourbillonnaire des rotors, largement utilisés dans l'industrie pour la conversion d'énergie mécanique. Leur sillage peut être modélisé par un ensemble de vortex hélicoïdaux entrelacés, au sein duquel de nombreuses instabilités peuvent émerger. Ces mécanismes ont un impact significatif sur l'évolution intermédiaire du sillage et peuvent influencer les performances du rotor. Ce travail, plus particulièrement dédié aux hélicoptères, s'est tout d'abord attaché à caractériser expérimentalement l'écoulement derrière trois rotors conçus pour des régimes de vols différents. Ces conditions de bases ont ensuite servi à étudier les différents modes instables de grande longueur d'onde pouvant apparaître dans le sillage. Une bonne correspondance est trouvée entre les prédictions théoriques et les mesures expérimentales des taux de croissance associés. Une rapide analyse de l'évolution spatio-temporelle de ces perturbations a permis d'étudier la propagation d'une perturbation localisée dans le plan rotor. Il est en effet envisagé que dans certaines configurations de vol de descente, les instabilités provoquent la transition du sillage vers un état spécifique connu sous le nom d'état d'anneau tourbillonnaire, potentiellement dangereux pour l'appareil. Il se caractérise par une stagnation du sillage au voisinage du plan rotor qui en dégrade les performances
This work studies the instabilities associated with the wake of a rotor. These devices are used in many applications such as energy harvesting or propulsion,and their optimisation is crucial for both industry and the environment. The wakebehind a rotor is broadly defined as a system of interlaced helical vortices, whose dynamics governs the transition from the near-wake to the far-wake regime. In our first study, we investigate the wake behind different small-scale rotors in their design operating condition. We use the resulting flows in a subsequent linear stability analysis, aiming at predicting long-wavelength instability modes in the helical vortex. We find that the theoretical prediction of the modes growth-rates matches our experimental measurements. We also show that the dynamics of helical vortex filaments can be predicted from simple two-dimensional theory. In more critical flow configurations, instabilities are suspected to promote the transition to hazardous regimes such as the so called Vortex-Ring State, characterised by large-scale recirculating structures.The second part of this work is thus dedicated to the spatio-temporal evolution of localised perturbations in the rotor plane, and their potential tendency to propagate upstream in the flow
APA, Harvard, Vancouver, ISO, and other styles
8

García-Villalba, Navaridas Manuel. "Large eddy simulation of turbulent swirling jets." Karlsruhe : Univ.-Verl. Karlsruhe, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?idn=979664586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tarr, Stephen John. "The mathematical modelling multiple swirling burner flows." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vondál, Jiří. "Computational Modeling of Turbulent Swirling Diffusion Flames." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234149.

Full text
Abstract:
Schopnost predikovat tepelné toky do stěn v oblasti spalování, konstrukce pecí a procesního průmyslu je velmi důležitá pro návrh těchto zařízení. Je to často klíčový požadavek pro pevnostní výpočty. Cílem této práce je proto získat kvalitní naměřená data na experimentálním zařízení a využít je pro validaci standardně využívaných modelů počítačového modelování turbulentního vířivého difúzního spalování zemního plynu. Experimentální měření bylo provedeno na vodou chlazené spalovací komoře průmyslových parametrů. Byly provedeny měření se pro dva výkony hořáku – 745 kW a 1120 kW. Z měření byla vyhodnocena data a odvozeno nastavení okrajových podmínek pro počítačovou simulaci. Některé okrajové podmínky bylo nutné získat prostřednictvím dalšího měření, nebo separátní počítačové simulace tak jako například pro emisivitu, a nebo teplotu stěny. Práce zahrnuje několik vlastnoručně vytvořených počítačových programů pro zpracování dat. Velmi dobrých výsledků bylo dosaženo při predikci tepelných toků pro nižší výkon hořáku, kde odchylky od naměřených hodnot nepřesáhly 0.2 % pro celkové odvedené teplo a 16 % pro lokální tepelný tok stěnou komory. Vyšší tepelný výkon však přinesl snížení přesnosti těchto predikcí z důvodů chybně určené turbulence. Proto se v závěru práce zaměřuje na predikce vířivého proudění za vířičem a identifikuje několik problematických míst v použitých modelech využívaných i v komerčních aplikacích.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Swirling"

1

Robert, Na'ima bint. The swirling hijaab. London: Mantra, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robert, Na'ima bint. The swirling hijaab. London: Mantra, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robert, Na'ima bint. The swirling hijaab. London: Mantra, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nilesh, Mistry, and Rajalingam Nallathamby, eds. The swirling Hijaab. London: Mantra, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Werner, Patricia. The swirling mists of Cornwall. New York: Zebra Books, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robert, Na'ima bint. Putaran Hijab =: The swirling hijaab. London, United Kingdom: Mantra Lingua, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Copyright Paperback Collection (Library of Congress), ed. The swirling mists of Cornwall. New York: Zebra Books, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lumley, John Leask. Development of a model for swirling flows. Ithaca, N.Y: Cornell University, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sislian, Jean Pascal. Measurements of mean velocity and turbulent intensities in a free isothermal swirling jet. [S.l.]: [s.n.], 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robert, Na'ima bint. L' avvolgente hijaab =: The swirling hijaab. London: Mantra Lingua, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Swirling"

1

Scheaffer, Richard L., Ann Watkins, Mrudulla Gnanadesikan, and Jeffrey A. Witmer. "Funnel Swirling." In Activity-Based Statistics, 190–91. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-3843-8_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Iguchi, Manabu, and Olusegun J. Ilegbusi. "Swirling Flow and Mixing." In Modeling Multiphase Materials Processes, 169–213. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7479-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mao, Xuerui, and Spencer J. Sherwin. "Spectra of Swirling Flow." In Seventh IUTAM Symposium on Laminar-Turbulent Transition, 247–52. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3723-7_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pinton, J. F., P. Odier, and S. Fauve. "Magnetohydrodynamics in turbulent swirling flow." In Fundamental Problematic Issues in Turbulence, 467–70. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8689-5_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shanmugaraj, Gopinath, Sahil Garg, and Mohit Pant. "Swirling Subsonic Annular Circular Jets." In Recent Advances in Mathematics for Engineering, 259–71. Title: Recent advances in mathematics for engineering / edited by Mangey Ram. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2020] | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9780429200304-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fominykh, A. V., I. R. Chinyaev, and A. A. Ezdina. "Hose Regulating Device with Swirling." In Lecture Notes in Mechanical Engineering, 49–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chomaz, Jean-Marc, and Francois Gallaire. "HELICAL MODES IN SWIRLING JETS." In Fluid Mechanics and Its Applications, 265–71. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4181-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Birnir, Björn. "Existence Theory of Swirling Flow." In SpringerBriefs in Mathematics, 75–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-6262-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parter, Seymour V., and K. R. Rajagopal. "Swirling Flow between Rotating Plates." In The Breadth and Depth of Continuum Mechanics, 533–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61634-1_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Poncet, S., R. Schiestel, and R. Monchaux. "Turbulent Von Kármán Swirling Flows." In Springer Proceedings Physics, 547–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72604-3_174.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Swirling"

1

Angelidis, Alexis, Marie-Paule Cani, Geoff Wyvill, and Scott King. "Swirling-sweepers." In ACM SIGGRAPH 2004 Sketches. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1186223.1186273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stoellinger, Michael, Celestin Zemtsop, Stefan Heinz, and Dan Stanescu. "A RANS-LES Study of Swirling and Non-Swirling Jets." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

CHUECH, STEPHEN. "Direct simulation of non-swirling and swirling annular liquid jets." In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Z., D. Guo, F. Mashayek, B. Habibzadeh, P. Mehresh, and A. Gupta. "Two-phase turbulence model evaluation in swirling and non-swirling sprays." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KEITH, JR., THEO. "Transonic swirling nozzle flow." In 27th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CHANG, CHAU-LYAN, and CHARLES MERKLE. "Viscous swirling nozzle flow." In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lilley, David. "Turbulent swirling reacting flow." In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hallqvist, Thomas, and Laszlo Fuchs. "Numerical Study of Swirling and Non-Swirling Annular Impinging Jets with Heat Transfer." In 35th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahumada Lazo, Jorge Arturo, Mario De La Torre Terrazas, Ruey-Hung Chen, and Fangjun Shu. "Experimental Study of an Underexpanded Supersonic Jet under Non-Swirling and Swirling Conditions." In 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ivanova, Elizaveta, Berthold Noll, and Manfred Aigner. "RANS and LES of Turbulent Mixing in Confined Swirling and Non-Swirling Jets." In 6th AIAA Theoretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3934.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Swirling"

1

Gessner, Frederick B. Turbulence Structure of Mixing Swirling Flows. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada193063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gessner, Fredrick B. Turbulence Structure of Mixing Swirling Flows. Fort Belvoir, VA: Defense Technical Information Center, December 1989. http://dx.doi.org/10.21236/ada216628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lumley, John L. Development of a Model for Swirling Flows. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada177302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rajagopal, Docotr. Investigations into Swirling Flows of Newtonian and Non-Newtonian Fluids. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada253298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cloutman, L. Analytic solutions for the decay of turbulent swirling flow in a cylinder. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/5110095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naughton, J., D. Stanescu, S. Heinz, R. Semaan, M. Stoellinger, and C. Zemtsop. Integrated Computational/Experimental Study of Turbulence Modification and Mixing Enhancement in Swirling Jets. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada495159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seibert, Michael, and Sen Nieh. Simulation of Dual Firing of Hydrogen and JP-8 in a Swirling Combustor. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada563300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rodriguez, Salvador B. Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1055916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography