Dissertations / Theses on the topic 'SWCNH'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 42 dissertations / theses for your research on the topic 'SWCNH.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sharma, Amrit Prasad. "Electronic characterization of swcnt/block copolymer-based nanofiber for biosensor applications." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2016. http://digitalcommons.auctr.edu/dissertations/3118.
Full textAdams, Melanie Chantal. "Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81137.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 27).
Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis is an important strategy for improving their rate capability and power density (which is the capacity at high rates). Using biological materials as a template during synthesis allows us to achieve this, improving synthesis methods. Utilizing biological materials makes it possible to synthesize nano-scale particles, and using the M13 virus has shown to be an early solution. The addition of conductive material, such as single-walled carbon nanotubes (SWCNT or CNT), also improves the conductivity of the electrode, further improving the battery's rate capabilities (Lee et al., 2009). In this study, our goal is to improve the conductivity of the LIB battery cathode using M13-carbon nanotube complexes.
by Melanie Chantal Adams.
S.B.
Müller, Christian, Ammar Al-Hamry, Olfa Kanoun, Mahfujur Rahaman, Dietrich R. T. Zahn, Elaine Yoshiko Matsubara, and José Mauricio Rosolen. "Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films." MDPI AG, 2019. https://monarch.qucosa.de/id/qucosa%3A33173.
Full textGupta, Ankit. "Multi-Scale Modeling of Mechanical Properties of Single Wall Carbon Nanotube (SWCNT) Networks." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1022.
Full textMiller, Matthew Ryan. "Mechanical Properties of PLGA Polymer Composites Using Nonfunctionalized Carbon Nanotubes as Reinforcement." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1203.
Full textChan, Ka Keung. "SYNTHESIS AND FUNCTIONALITY STUDY OF NOVEL BIOMIMETIC N-GLYCAN POLYMERS." Cleveland State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu162309270958734.
Full textMada, Mykanth Reddy Materials Science & Engineering Faculty of Science UNSW. "Fabrication and characterisation of SWCNT-PMMA and charcoal-PMMA composites with superior electrical conductivity and surface hardness properties." Awarded by:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/41831.
Full textPorto, Arthur Barra. "Oxidação controlada e funcionalização de nanotubos de carbono de parede única: uma abordagem experimental e teórica." Universidade Federal de Juiz de Fora (UFJF), 2017. https://repositorio.ufjf.br/jspui/handle/ufjf/4817.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-06T12:08:10Z (GMT) No. of bitstreams: 1 arthurbarraporto.pdf: 4422124 bytes, checksum: 6ea016d6bb89f506c7e2ee4f2fdc7a24 (MD5)
Made available in DSpace on 2017-06-06T12:08:10Z (GMT). No. of bitstreams: 1 arthurbarraporto.pdf: 4422124 bytes, checksum: 6ea016d6bb89f506c7e2ee4f2fdc7a24 (MD5) Previous issue date: 2017-03-31
O tratamento químico de nanotubos de carbono (NTC) é necessário para aprimorar suas propriedades, aplicações e remover impurezas. O tratamento, com ácidos fortes como H2SO4 e HNO3 tem sido a alternativa mais utilizada. A mistura desses ácidos fortes produz espécies eletrofílica NO2+, íon nitrônio, que é um potencial agente oxidante, cuja concentração depende da proporção da mistura H2SO4:HNO3. Neste trabalho, a interação entre o íon nitrônio e o nanotubo de carbono de camada única (SWCNT, do inglês Single-Walled Carbon Nanotube) foi explorado experimental e computacionalmente. Experimentalmente a solução H2SO4:HNO3 foi analisada em proporções diferentes (1:1, 2:1, 5:2, 3:1, 4:1, 5:1, 6:1, 7:1 e 8:1 v/v) e a concentração de íon nitrônio foi obtida utilizando-se uma curva analítica construída com uma solução padrão de NO2BF4 em H2SO4. Todas as espécies na mistura ácida foram caracterizadas por espectroscopia Raman. Os resultados mostraram que a concentração do íon nitrônio na mistura ácida varia de 0 até 4,53 mol/L. As misturas 2:1, 5:2 e 3:1 foram então utilizadas para a oxidação química de SWCNT por 4, 8 e 12 horas. As amostras finais foram analisadas por espectroscopia Raman, análise termogravimétrica (TG) e espectroscopia de raios X por dispersão de energia (EDS). Dentre os resultados, foram observados por meio da espectroscopia Raman uma alta desordem estrutural no sistema após a oxidação, com significativas mudanças nos modos de respiração radial (RBM), como o desaparecimento de bandas de tubos com pequenos diâmetros, além do aumento dada razão ID/IG de 0,027 para 0,59 em tubos oxidados com a mistura 3:1. As análises TG mostraram um aumento na temperatura de decomposição dos tubos em, pelo menos, 30ºC se comparado às amostras padrão, sugerindo um significativo grau de oxidação. Os resultados de EDS apontaram um aumento considerável na quantidade de oxigênio, passando de 7% para 20%, aumentando com o aumento do tempo de reação e com a concentração do íon nitrônio. Computacionalmente a interação entre o íon nitrônio e o SWCNT foi estudada através de cálculos de mecânica quântica. Foram analisados modelos do tipo armchair (5,5), sendo um tubo perfeito (P) e dois outros contendo defeitos do tipo Stone-Wales (SW) e monovacância (V1) para modelar regiões distintas na superfície do nanotubo. Para os modelos P e SW, o grupo funcional éter (COC) foi obtido como um produto principal, com um epóxido (CCO) encontrado como um intermediário de reação. As barreiras de energia livre de Gibbs foram de 31,7 kcal.mol-1 (P) e 37,8 kcal.mol-1 (SW) em solução aquosa à 298,15 K e 1 atm. O mecanismo envolvendo o modelo V leva à obtenção de uma carbonila (CO) como produto principal, formado espontaneamente através da adsorção do íon NO2+. O mecanismo de alta energia também foi descrito no modelo V, passando por um estado de transição, caracterizado como um anel do tipo oxaziridina. Através deste caminho um grupamento do tipo alcóxido (CO-) é formado inicialmente e reage com um carbono vizinho, produzindo um grupo funcional do tipo éter (COC). A energia livre de Gibbs de ativação foi de 4,5 e 11,2 kcal.mol-1 para primeiro (CO-) e segundo (COC) passos, respectivamente. Os resultados reportados sugerem o início da oxidação em meio ácido através da região de vacância, com primeira oxidação levando a uma carbonila, seguida das reações nos defeitos topológicos (P e SW) na superfície com a formação de um éter (COC) como principal produto.
The chemical treatment of carbon nanotubes (CNT) is necessary to improve their properties, applications and to remove impurities. Treatments with strong acids as H2SO4 and HNO3 is the mostly used alternative. The mixture of these strong acids produces the electrophilic species NO2+, the nitronium ion that is a potential oxidizing with concentration depending on the H2SO4:HNO3 proportion. In this work the interaction between the nitronium ion and a single-walled carbon nanotube (SWCNT) was explored experimentally e theoretically. Experimentally, the H2SO4:HNO3 solution was analyzed at different proportions (1:1, 2:1, 5:2, 3:1, 4:1, 5:1, 6:1, 7:1 and 8:1 v/v) and the nitronium ion concentration obtained using a calibration plot constructed from a standard solution of NO2BF4 in H2SO4. All the species in the acid mixture were characterized by Raman spectroscopy. The results showed that the concentration of nitronium ion in the acid mixtures varied from 0 to 4.53 mol/L. The mixtures 2:1, 5:2 and 3:1 were then used for the chemical oxidation of single-walled CNT for 4, 8 and 12 hours. The final samples were analyzed by Raman spectroscopy, thermal gravimetric analysis (TGA) and energy dispersive X-ray spectroscopy (EDS). It was observed by Raman spectroscopy a higher structural disorder in the system after the oxidation, with significant changes in RBM modes, such as disappearance of bands of small diameter tubes, and in the ID/IG ratio, which increases from 0.027 until 0.59 to CNT oxidized with 3:1 mixture. The TGA showed an increase in the temperature of the tube decomposition of at least 30ºC relative to the pristine form, suggesting a significant oxidation degree. The EDS data point to considerable increase of the oxygen amount from 7% to at least 20%, increasing with the reaction time and nitronium ion concentration. Theoretically the interaction between nitronium ion and SWCNT was studied by quantum mechanical calculations. In addition to the pristine (P) form of an armchair (5,5) SWCNT, two other species containing Stone-Wales (SW) and mono-vacancy (V1) defects were considered in order to model the distinct defective regions on the carbon nanotube surface. For the P and SW regions, the ether (COC) functional group was predicted as the main product, with an epoxide (CCO) found as a reactive intermediate. The Gibbs free energy barriers were predicted to be 31.7 (P) and 37.8 kcal mol-1 (SW) in aqueous solution at 298.15 K and 1 atm. The mechanism involving the V1 region leads to the carbonyl group (CO) as the main product, which is formed spontaneously upon NO2+ adsorption without energy barrier. A higher energy mechanism was also described for V1 region, passing through a transition state characterized as an oxaziridine-like ring. Through this pathway an alkoxy (CO-) is firstly formed and reacts with the neighbor carbon yielding the ether (COC) functional group. The activation Gibbs free energies were 4.5 and 11.2 kcal mol-1 for the first (CO- formation) and second (COC formation) steps, respectively. The results reported here suggest that at the beginning of oxidation in acid medium, the vacancy regions (V) are firstly oxidized leading to the carbonyl (CO) functional groups, followed by reactions at the topological defective parts (P and SW) of the tube surface where the ether (COC) function is the main product.
Kraft, Thomas. "Ternary blend ink formulations for fabricating organic solar cells via inkjet printing." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0027.
Full textTwo approaches were followed to achieve increased control over properties of the photo-active layer (PAL) in solution processed polymer solar cells. This was accomplished by either (1) the addition of functionalized single-walled carbon nanotubes (SWCNTs) to improve the charge transport properties of the device or (2) the realization of dual donor polymer ternary blends to achieve colour-tuned devices.In the first component of the study, P3HT:PC61BM blends were doped with SWCNTs with the ambition to improve the morphology and charge transport within the PAL. The SWCNTs were functionalized with alkyl chains to increase their dispersive properties in solution, increase their interaction with the P3HT polymer matrix, and to disrupt the metallic characteristic of the tubes, which ensures that the incorporated SWCNTs are primarily semi-conducting. P3HT:PCBM:CNT composite films were characterized and prepared for use as the photoactive layer within the inverted solar cell. The CNT doping acts to increase order within the active layer and improve the active layer’s charge transport properties (conductivity) as well as showed some promise to increase the stability of the device. The goal is that improved charge transport will allow high level PSC performance as the active layer thickness and area is increased, which is an important consideration for large-area inkjet printing. The use of ternary blends (two donor polymers with a fullerene acceptor) in bulk-heterojunction (BHJ) photovoltaic devices was investigated as a future means to colour-tune ink-jet printed PSCs. The study involved the blending of two of the three chosen donor polymers [red (P3HT), blue (B1), and green (G1)] with PC61BM. Through EQE measurements, it was shown that even devices with blends exhibiting poor efficiencies, caused by traps, both polymers contributed to the PV effect. However, traps were avoided to create a parallel-like BHJ when two polymers were chosen with suitable physical compatibility (harmonious solid state mixing), and appropriate HOMO-HOMO energy band alignment. The parallel diode model was used to describe the PV circuit of devices with the B1:G1:PC61BM ternary blend
Yaya, Abu. "Interactions faibles dans les nanosystèmes carbones." Nantes, 2011. http://archive.bu.univ-nantes.fr/pollux/show.action?id=f1e38479-78b7-4d42-9bed-71420c161382.
Full textThis thesis uses the ab initio density functional modeling programme AIMPRO to study several important examples of weak intermolecular interactions in carbon nanomaterials. At the quantum mechanical level, our calculations give a reliable and improved understanding of the role and feature of weak intermolecular interactions, which cannot be accurately predicted by conventional methods such as classical interatomic potentials. First, the geometry and binding of bromine physisorbed on carbon nanomaterials (graphene, graphite and single walled nanotubes) is studied. In graphene, we find a new Br2 form which is reported for the first time in this thesis, where the molecule sits perpendicular to the graphene sheet with an extremely strong molecular dipole. Bromination opens a small (86- meV) band gap and strongly dopes the graphene. In graphite Br2 is stable parallel to the carbon layers with less charge transfer and no molecular dipole. At higher Br2 concentrations polybromide chain structures are thermodynamically favoured, but will not occur spontaneously due to an appreciable formation barrier (27. 01 kJ/mol). For single walled nanotubes Br2 lies perpendicular to the tube surface similar to graphene, while in bundles Br2 intercalates similar to graphite. Experimental Raman spectra are recorded to verify this result. We next study π-π stacking interactions between benzene and PPV oligomer chains with various carbon nanomaterials. For the benzene dimer we successfully reproduce high level theory stable structures, and for benzene on graphene and SWCNTs, the stacking arrangement matches AB- stacking in graphite. The orientation of the interaction between PPV/PPV is different from PPV/nanotube or PPV/graphene. In the former the molecular planes are orthogonal, similar to the crystal packing in PPV, as well as in other polyaromatic hydrocarbons. In the others the PPV plane lies (axially) parallel to the substrates, attributed to π-π stacking effects. Wavefunction analysis suggests very little electronic coupling between the PPV and SWCNTs near to the Fermi level. Predicted differences in interaction between PPV and semi-conducting or metallic tubes suggest a new route to experimental ultraefficient composite PPV-SWCNT organic light emitting device design
LUCCI, MASSIMILIANO. "Gas sensor based on single wall carbon nanotubes." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/601.
Full textSchmucker, Wolfgang Josef [Verfasser], and Hans-Achim [Akademischer Betreuer] Wagenknecht. "Modulation der Wechselwirkungen und Untersuchungen zur Stabilität der DNA-SWCNT-Hybride mittels chromophor- und hydroxychinolinmodifizierter Oligonukleotide / Wolfgang Josef Schmucker. Betreuer: Hans-Achim Wagenknecht." Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1043779752/34.
Full textMzoughi, Nada [Verfasser], Bernhard [Akademischer Betreuer] [Gutachter] Wolf, and Franz [Gutachter] Kreupl. "Inkjet-printed flexible and disposable biochips with SWCNT sensors for multiparametric microphysiological measurements / Nada Mzoughi ; Gutachter: Bernhard Wolf, Franz Kreupl ; Betreuer: Bernhard Wolf." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1132248663/34.
Full text太田, 貴久. "ポリエチレングリコール修飾によるペプチド被覆カーボンナノチューブの分散安定化と得られた複合体のドラッグデリバリーシステムキャリアへの応用に関する研究." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215491.
Full textIbrahim, Imad. "Fabrication of high yield horizontally aligned single wall carbon nanotubes for molecular electronics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-117433.
Full textDie außergewöhnlichen Eigenschaften von einwandigen Kohlenstoffnanoröhren (engl. single wall carbon nanotubes, SWCNTs) haben bemerkenswerte Forschungsaktivitäten zur Verwirklichung von auf SWCNTs basierenden Anwendungen für verschiedene Bereiche, die von Nanokompositen bis hin zur Nanoelektronik reichen, stimuliert. Ihre hohe Ladungsträgermobilität und die außerordentlichen hohen Ladungsdichten, die in SWCNTs erreicht werden können sowie ihre Eigenschaft, entweder halbleitend oder metallisch zu sein, machen sie zu idealen Konstituenten von nanoelektronischen Schaltkreisen. Für Anwendungen in der Nanoelektronik sind entweder einzelne oder parallel angeordnete SWCNTs vorteilhaft. Darüber hinaus sind dicht gepackte Anordnungen von SWCNTs erforderlich, um die relativ hohen Ströme in Hochfrequenzbauelementen zu transportieren. Für eine erfolgreiche Realisierung von großskaligen nanoelektronischen Bauteilen, die auf SWCNTs basieren, sind noch zwei enorm wichtige Kernprobleme zu lösen, die weitere Forschungsanstrengungen erfordern: die reproduzierbare und verlässliche Kontrolle der räumlichen Positionierung und Orientierung der Nanoröhren sowie die Kontrolle der Chiralität der einzelnen SWCNTs. Hinsichtlich der Orientierung der Nanoröhren kann die horizontal parallele Ausrichtung von SWCNTs mit verschiedenen Techniken erreicht werden. Diese setzen entweder nach dem eigentlichen Wachstum der Röhren ein (Post-Synthese-Methoden wie z.B. Dielektrophorese oder Langmuir-Blodgett-Techniken) oder erreichen direkt während des Wachstums (z.B. durch Chemical-Vapor-Deposition-Methoden (CVD)) die parallele Anordnung. Durch die niedrigen Prozesstemperaturen, die während des Herstellungsprozesses erforderlich sind, erlauben die nach der eigentlichen Synthese stattfindenden Ausrichtungsmethoden die parallele Anordnung von Nanoröhren auf nahezu jedem Substrat, jedoch stellen die geringe Reproduzierbarkeit dieser Prozesse, die schwierige Kontrollierbarkeit der räumlichen Anordnung und die limitierte Qualität der ausgerichteten Röhren aufgrund der erforderlichen Prozessschritte natürliche Beschränkungen dieser Techniken dar. Die einfache Durchführung und ihre Skalierbarkeit, zusammen mit dem reproduzierbaren Wachstum qualitativ sehr hochwertiger SWCNTs mit hoher Kontrolle von räumlicher Anordnung, Orientierung und Länge machen die CVD-Methode zur erfolgversprechendsten Technik für die Herstellung von dichtgepackten hochparallelen horizontalen Anordnungen von SWCNTs. Diese CVD-Ansätze weisen jedoch auch einige Nachteile auf, die in den bei der Synthese verwendeten Katalysatorpartikeln (metallisch oder nicht-metallisch) begründet liegen, da das Katalysatormaterial die Röhren kontaminieren und dadurch ihre intrinsischen Eigenschaften beeinflussen kann. Daher ist eine katalysatorfreie Synthesemethode für ausgerichtete SWCNTs ein höchst erstrebenswertes Ziel. Die vorliegende Arbeit beschreibt detaillierte und systematische experimentelle Untersuchungen zur Herstellung von horizontalen, parallel ausgerichteten Anordnungen von SWCNTs unter Verwendung von Methoden, die sowohl nach dem eigentlichen Wachstum der Nanoröhren (Dielektrophorese) als auch während des Wachstums ansetzen (CVD). Bei den CVD-Methoden werden sowohl solche, die auf der Verwendung von Katalysatoren basieren, als auch katalysatorfreie Techniken verwendet. Während metallische Nanopartikel den Ausgangspunkt für das Wachstum von SWCNTs darstellen, werden geöffnete und aktivierte Fullerenstrukturen verwendet, um das katalysatorfreie Wachstum von reinen ein- oder mehrwandigen Nanoröhren zu erreichen. Die systematischen Untersuchungen ermöglichen ein tiefgehendes Verständnis der Wachstumsmechanismen von SWCNTs, die unter Verwendung von Katalysatoren oder katalysatorfrei erzeugt synthetisiert wurden. Die erzielten Ergebnisse erhöhen in einem hohen Maß das Verständnis der Herstellung von horizontal parallel angeordneten Nanoröhren, die durch Post-Synthese-Methoden oder direkt während des Wachstumsprozesses ausgerichtet wurden. Die erzielten Einsichten erlauben die Herstellung solcher Strukturen mit hoher Ausbeute und mit einem hohen Maß an räumlicher Kontrolle der Anordnung. Zum ersten Male kann ein Verfahren präsentiert werden, mit dem horizontal parallel angeordnete Nanoröhren in gekreuzten Strukturen mit wohldefinierten Kreuzungswinkeln hergestellt werden können. Zusätzlich werden die Transporteigenschaften von parallel ausgerichteten Nanoröhren bei Raumtemperatur, durch die Herstellung von auf den dargestellten Strukturen basierenden Bauelementen, untersucht
Shahverdi, Ali. "In situ purification in large-scale production of single-walled carbon nanotubes by induction thermal plasma." Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1540.
Full textOftadeh, M., M. Gholamian, and H. H. Abdallah. "Investigation of Interaction Hydrogen Sulfide with (5,0) and (5,5) Single-Wall Carbon Nanotubes by DFT Method." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35161.
Full textDutta, Debosruti. "Insights into the Epitaxial Relationships between One-Dimensional Nanomaterials and Metal Catalyst Surfaces Using Density Functional Theory Calculations." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5213.
Full textRIGONI, FEDERICA. "EXPLORING DETECTION LIMITS AND RESPONSE TIME SCALES OF CHEMIRESISTOR GAS SENSORS BASED ON CARBON NANOTUBE AND HYBRID LAYERS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/262413.
Full textSchmidt, Andreas. "Carbon nanostructures for femtosecond mode-locked lasers in the 1.0 to 2.1 micrometer wavelength range." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2016. http://dx.doi.org/10.18452/17552.
Full textThis thesis addresses the interplay of highly efficient active laser media and novel saturable absorbers based on the carbon nanostructures graphene and single-walled carbon nanotubes (SWCNTs). The active laser media cover the spectral region from 1.0 micron up to 2.1 micron, i.e. a whole octave, and apply ytterbium, chromium and thulium as active lasing ions. Within this work, the saturable absorbers based on SWCNTs and graphene are characterized with respect to their relaxation behaviour after excitation, and with respect to their fluence-dependent transmission and saturation. A precedent introduction of the general optical properties of graphene and SWCNTs is presented as well and the models to describe real samples experimentally are deduced from theoretical model conceptions. The saturable absorbers based on graphene and SWCNTs are compared to each other and to classical semiconducting saturable absorbers. This thesis further presents the generation of ultrashort laser pulses applying these novel carbon nanostructure based saturable absorbers in different lasers. The obtained pulses are characterized by spectrometry, autocorrelation, radio-frequency measurements and partially by FROG measurements. Additionally, the underlying pulse formation process and the Q-switching stability are discussed.
Grimm, Daniel. "A combined experimental and theoretical approach towards the understanding of transport in one-dimensional molecular nanostructures." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1218037048209-51309.
Full textCastan, Alice. "Growth and Characterization of Single-walled Carbon Nanotubes from Chemically Synthesized Catalyst Precursors." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS028/document.
Full textThe work presented in this manuscript is focused on the study of single-walled carbon nanotube (S WCNT) growth by chemical vapor deposition, through the tuning of catalyst nanoparticle composition. The properties of S WCNTs strongly depend on their atomic structure, making structurally selective growth essential for future applications. Here we present a new and original method combining surface chemistry and coordination chemistry, for S CNT growth using a wide range of mono- and bimetallic catalyst systems, formed by the reduction of chemically synthesized catalyst precursors.A thorough study of this process is presented for three metallic precursor systems (Fe, NiFe, NiC), derived from the Prussian blue compound family. An extensive characterization of the precursors, ca -talysts, and the resulting S CNTs has allowed to evidence effects of catalyst composition on growth phenomena.We also show the importance of cross-characterization of SWCNT growth samples, through a comparative study between TEM, and Raman spectroscopy for diameter distribution assessment of our growth samples, and on diameter-sorted SWCNT samples.Preliminary results on the use of cyanosols and polyoxomet alates for SWCNT growth with additional bimetallic catalyst systems (FePd , and CoW) are also presented , highlighting the rich potential of inorganic chemistry and coordination chemistry in the field of SWCNT growth
Joseph, Johnson. "Numerical Modeling and Characterization of Vertically Aligned Carbon Nanotube Arrays." UKnowledge, 2013. http://uknowledge.uky.edu/me_etds/28.
Full textMarques, Rita Ruivo Neves. "Development of hybrid TiO2/SWCNT photocatalysts." Master's thesis, 2009. http://hdl.handle.net/10216/66796.
Full textMarques, Rita Ruivo Neves. "Development of hybrid TiO2/SWCNT photocatalysts." Dissertação, 2009. http://hdl.handle.net/10216/66796.
Full textTsai, Kun-Ju, and 蔡昆儒. "SWCNT/Ni-Co-Mn hydroxide nanohybrid materials as electrodes for flexible supercapacitors." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/8z5daq.
Full textCho, Yu-Hsuan, and 卓育萱. "Fabrication of Metal-SWCNT-Metal Platforms for Electric Characterization by Thermal Scanning Probe Lithography." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/tf98qe.
Full text國立臺灣大學
化學研究所
106
The study on molecular electronic properties is based on Metal-Molecule-Metal (MMM) junctions. Common method for fabricating MMM junctions such as focused ion/electron beam-induced deposition (FIBD/FEBID) is not ideal due to metal-halo which may result in short circuit. Herein, Pt-SWCNT (single-walled carbon nanotube)-Pt platforms were fabricated by thermal scanning probe lithography (t-SPL). T-SPL uses heated probe to define the pattern. A dedicated t-SPL instrument is NanoFrazor which is thermal atomic force microscopy probe. First, two-layer polymers were spin coated on wafer which has been deposited SWCNTs. The base layer is polymethylglutarimide (PMGI) and top layer is polyphthalaldehyde (PPA). The probe of NanoFrazor can be heated to 1000 0C. When the hot probe is brought into contact with surface, PPA decomposes and evaporates locally. Therefore, we pattern the both ends of SWCNT for electrodes. The time of this process is about 1-3 minutes. Next, using developer to dissolve the bare PMGI. Subsequently, deposit Pt by physical vapor deposition (PVD) and then lift off unwanted region of Pt. This study focuses on fabrication of Pt-SWCNT-Pt platforms by t-SPL technique. (1) To scan the SWCNT which under the two-layer polymers by AFM, decreasing the concentration of PPA for thinner film; however, low concentration of PPA result in the PMGI being over-etching. The 20 nm PMGI and 20 nm PPA are appropriate conditions. (2) The resistivity of Pt wire is 4.11 X 10–6 Ωcm which is lower than that fabricated by FIBD/FEBID. (3) The resistance of Pt-SWCNT-Pt is 9.5 kΩ which consistent with previous work. Furthermore, the IETS (inelastic electron tunnelling spectroscopy) signal of SWCNT are detected.
"Effects of Sputtered Platinum Counter Electrode and Integrated TiO2 Electrode with SWCNT on DSSC Performance." Master's thesis, 2011. http://hdl.handle.net/2286/R.I.14369.
Full textDissertation/Thesis
M.S.Tech Technology 2011
Lin, Jia-Ru, and 林佳儒. "Investigation of Heat-Dissipation Efficiency and Thermal Deformation of TECs with SWCNT Coated Heat Sink." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4qpq7w.
Full text國立清華大學
動力機械工程學系
106
Thermoelectric cooler (TEC) is a device which converts electrical energy into heat energy. The primary principle of the TEC is the Peltier effect. Thermoelectric cooler is a sandwich structure consisting of many different materials. When a direct current is applied, thermal stress and thermal deformation are unavoidably produced in the TEC due to the temperature gradient. Moreover, due to the mismatch of thermal expansion coefficient between component materials of the TEC, the TEC may be out of work after an extended period of practice. In this thesis, two sets of three dimensional digital image correlation (3D-DIC) systems were adopted to measure the deformation of two different TECs, i.e. TEC_A and TEC_B, of 127 pairs of p-type and n-type semiconductors with and without the heat sink, respectively. Strains of the TEC under different currents were measured, and the quality of the TEC was investigated by the strain and temperature distributions. Results showed that the strain becomes higher as the current increased. The quality of TEC_B was also found better based on results of the strain distribution. To enhance the cooling effect, single-walled carbon nanotube (SWCNT) was used to coat on the surface of the heat sink, and the cooling effect of the heat sink was found successfully improved. The strain of the TEC is smaller when the SWCNT heat sink was added, and the overall temperature distribution was also decreased. In the future, it is possible to use the SWCNT heat sink to replace the cooling fan for TECs under low and medium current. In addition to increase the service life of TECs, cost and the vibration produced from the cooling fan can also be reduced.
Ji, Jia-Lin, and 紀佳伶. "Fabrication of Metal-Single SWCNT-Metal Junctions by ThermalScanning Probe Lithography and DNA-Assisted Dispersion." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/zj56yj.
Full text國立臺灣大學
化學研究所
107
The Metal–Molecule–Metal (MMM) junctions are widely utilized to measure the electrical properties of single molecules and constructed mostly by break-junction and electromigration method in literature precedents. However, the size of gap and target molecules are different, and the attachment is constructed on the basis of chemical adsorption, resulting in the instability of device. To fix these issues, single single-walled carbon nanotube (single SWCNT) replaces metal as electrode material due to its nano diameter where we envisaged to form covalent bond with molecule in construction of MMM junction. Compared with SWCNT branches, single SWCNT forms one bond with molecule. However, it is challenging that the carbon nanotubes are prone to form carbon branches in organic solvents and water. Therefore, we introduced single-strand DNA in SWCNT solution to suppress the aggregation of SWCNT by the strong π-π interaction between single-strand DNA and single SWCNT, improving the ratio of single SWCNT to 87% significantly. Also, we modified the fabrication using thermal scanning probe lithography (t-SPL) and photoresist with better yield. The molecular junction with Pt–single SWCNT–Pt is therefore constructed and the temperature-dependent resistance of single SWCNT can be obtained. Also, the D band, G band (C–C vibration in sp2-hybridized graphene) and G’ band (duplicated band from D band) of single SWCNT can be observed in inelastic electron tunneling spectroscopy (IETS). Our effort involves DNA-assisted dispersion of single SWCNT, modification of t-SPL, focusing on the electrical properties of single SWCNT and identification of single SWCNT in IETS. This research manifests a systematic, rational approach to obtain the characterization of single SWCNT, which is beneficial for further applications such as Pt–SWCNT–molecule–SWCNT–Pt molecular junction.
SU, WEI-RONG, and 蘇威榕. "SWCNT Decorate Non-enzymatic Glucose Sensor based on Cu2O Surface Modification of ZnO Nanorods/Graphene composites." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/k8368t.
Full text國立雲林科技大學
電子工程系
106
The non-enzymatic glucose sensor was successfully prepared in this research which the single-wall carbon nanotubes (SWCNTs) were wrapped with Nafion to enhance the sensitivity of sensor based on the copper(I) oxide (Cu2O) surface modification of zinc oxide nanorod (ZnO NR)/Graphene composites on ITO glass. The experimental procedure of this research has four steps: First, the different sputtering time was used to deposit the ZnO seed layer, and then will be synthesis ZnO NR by hydrothermal. The morphology of ZnO NR was checked by scanning electron microscope (SEM). Secondly, the optimal cupreous time of Cu2O on the ZnO NR would be verified by electrochemistry with the different concentration of glucose. Thirdly, the SWCNTs wrapped with Nafion was dropped to Cu2O /ZnO NR to increase the catching ability of the glucose and checked by electrochemistry. Lastly, graphene would be prepared on the ITO glass and then fabricated the Cu2O surface modification of ZnO NR/Graphene composites. In the electrochemistry measurement, 0.1M NaOH was used as the electrolyte, and there were four concentrations of glucose: 0, 100, 150 and 200 mg dL-1. The electrochemical characteristics of the sensors were investigated by cyclic voltammetry (CV). The results showed the modified electrodes of Cu2O/ZnO NR had a linear response to glucose concentration and the maximum concentration could reach to 200 mg/dL with the sensitivity of 0.6207 μA mg-1 dL cm-2(about 11.17 μA mM-1 cm-2). Because the SWCNTs wrapped with Nafion could enhance the capturing ability of glucose checked by the CVs curve of electrochemistry. Since, the modified electrodes of SWCNT/Cu2O/ZnO NR has the optimal linear range from 0 to 200 mg/dL and good sensitivity of 16.1 μA mg-1 dL cm-2(289.8 μA mM-1 cm-2). Anyway, the SWCNTs wrapped with Nafion could increase the sensitivity of glucose sensor. The chronoamperometry (CA) is a precision real time response of the glucose sensor. So the graphene was fabricated on the ITO glass to adhesive on the SWCNTs/Cu2O/ZnO NR/Graphene composites as the glucose sensor, then the sensor would be tested by the CA method with the increasing the glucose concentration. The calibration curve of glucose sensor has two linear ranges: 0-5.556 and 5.556-11.111 mM and have the sensitivity of 466.1 and 203.1 μA mM-1 cm-2, respectively. The addition of graphene could increase the sensitivity at low concentration and reduce the response time (< 2 s) for the SWCNTs/Cu2O/ZnO NR glucose sensor.
Lee, Hsin-Han, and 李欣翰. "An ab initio study on the system of molecular junction in between armchair SWCNT(single wall Carbon Nano-Tube)." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/12773424276104423644.
Full textLan, Mengyu. "Developments in Extended Finite Element Methods for Extraction of Strain Energy Release Rates and Computational Nanomechanics for SWCNT Aggregates." Thesis, 2013. https://doi.org/10.7916/D8V69RSP.
Full textTomczyk, Mateusz Michał. "Carbon nanotubes in medical imaging." Rozprawa doktorska, 2021. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=71921.
Full textTomczyk, Mateusz Michał. "Carbon nanotubes in medical imaging." Rozprawa doktorska, 2021. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=71921.
Full textMoore, Joshua John Edward. "Fabrication of Single-Walled Carbon Nanotube Electrodes for Ultracapacitors." Thesis, 2011. http://hdl.handle.net/10012/6173.
Full textIbrahim, Imad. "Fabrication of high yield horizontally aligned single wall carbon nanotubes for molecular electronics." Doctoral thesis, 2008. https://tud.qucosa.de/id/qucosa%3A27021.
Full textDie außergewöhnlichen Eigenschaften von einwandigen Kohlenstoffnanoröhren (engl. single wall carbon nanotubes, SWCNTs) haben bemerkenswerte Forschungsaktivitäten zur Verwirklichung von auf SWCNTs basierenden Anwendungen für verschiedene Bereiche, die von Nanokompositen bis hin zur Nanoelektronik reichen, stimuliert. Ihre hohe Ladungsträgermobilität und die außerordentlichen hohen Ladungsdichten, die in SWCNTs erreicht werden können sowie ihre Eigenschaft, entweder halbleitend oder metallisch zu sein, machen sie zu idealen Konstituenten von nanoelektronischen Schaltkreisen. Für Anwendungen in der Nanoelektronik sind entweder einzelne oder parallel angeordnete SWCNTs vorteilhaft. Darüber hinaus sind dicht gepackte Anordnungen von SWCNTs erforderlich, um die relativ hohen Ströme in Hochfrequenzbauelementen zu transportieren. Für eine erfolgreiche Realisierung von großskaligen nanoelektronischen Bauteilen, die auf SWCNTs basieren, sind noch zwei enorm wichtige Kernprobleme zu lösen, die weitere Forschungsanstrengungen erfordern: die reproduzierbare und verlässliche Kontrolle der räumlichen Positionierung und Orientierung der Nanoröhren sowie die Kontrolle der Chiralität der einzelnen SWCNTs. Hinsichtlich der Orientierung der Nanoröhren kann die horizontal parallele Ausrichtung von SWCNTs mit verschiedenen Techniken erreicht werden. Diese setzen entweder nach dem eigentlichen Wachstum der Röhren ein (Post-Synthese-Methoden wie z.B. Dielektrophorese oder Langmuir-Blodgett-Techniken) oder erreichen direkt während des Wachstums (z.B. durch Chemical-Vapor-Deposition-Methoden (CVD)) die parallele Anordnung. Durch die niedrigen Prozesstemperaturen, die während des Herstellungsprozesses erforderlich sind, erlauben die nach der eigentlichen Synthese stattfindenden Ausrichtungsmethoden die parallele Anordnung von Nanoröhren auf nahezu jedem Substrat, jedoch stellen die geringe Reproduzierbarkeit dieser Prozesse, die schwierige Kontrollierbarkeit der räumlichen Anordnung und die limitierte Qualität der ausgerichteten Röhren aufgrund der erforderlichen Prozessschritte natürliche Beschränkungen dieser Techniken dar. Die einfache Durchführung und ihre Skalierbarkeit, zusammen mit dem reproduzierbaren Wachstum qualitativ sehr hochwertiger SWCNTs mit hoher Kontrolle von räumlicher Anordnung, Orientierung und Länge machen die CVD-Methode zur erfolgversprechendsten Technik für die Herstellung von dichtgepackten hochparallelen horizontalen Anordnungen von SWCNTs. Diese CVD-Ansätze weisen jedoch auch einige Nachteile auf, die in den bei der Synthese verwendeten Katalysatorpartikeln (metallisch oder nicht-metallisch) begründet liegen, da das Katalysatormaterial die Röhren kontaminieren und dadurch ihre intrinsischen Eigenschaften beeinflussen kann. Daher ist eine katalysatorfreie Synthesemethode für ausgerichtete SWCNTs ein höchst erstrebenswertes Ziel. Die vorliegende Arbeit beschreibt detaillierte und systematische experimentelle Untersuchungen zur Herstellung von horizontalen, parallel ausgerichteten Anordnungen von SWCNTs unter Verwendung von Methoden, die sowohl nach dem eigentlichen Wachstum der Nanoröhren (Dielektrophorese) als auch während des Wachstums ansetzen (CVD). Bei den CVD-Methoden werden sowohl solche, die auf der Verwendung von Katalysatoren basieren, als auch katalysatorfreie Techniken verwendet. Während metallische Nanopartikel den Ausgangspunkt für das Wachstum von SWCNTs darstellen, werden geöffnete und aktivierte Fullerenstrukturen verwendet, um das katalysatorfreie Wachstum von reinen ein- oder mehrwandigen Nanoröhren zu erreichen. Die systematischen Untersuchungen ermöglichen ein tiefgehendes Verständnis der Wachstumsmechanismen von SWCNTs, die unter Verwendung von Katalysatoren oder katalysatorfrei erzeugt synthetisiert wurden. Die erzielten Ergebnisse erhöhen in einem hohen Maß das Verständnis der Herstellung von horizontal parallel angeordneten Nanoröhren, die durch Post-Synthese-Methoden oder direkt während des Wachstumsprozesses ausgerichtet wurden. Die erzielten Einsichten erlauben die Herstellung solcher Strukturen mit hoher Ausbeute und mit einem hohen Maß an räumlicher Kontrolle der Anordnung. Zum ersten Male kann ein Verfahren präsentiert werden, mit dem horizontal parallel angeordnete Nanoröhren in gekreuzten Strukturen mit wohldefinierten Kreuzungswinkeln hergestellt werden können. Zusätzlich werden die Transporteigenschaften von parallel ausgerichteten Nanoröhren bei Raumtemperatur, durch die Herstellung von auf den dargestellten Strukturen basierenden Bauelementen, untersucht.:Introduction ……………………………………………………………….…………… 11 1 Carbon nanotubes basics ……………………………………………………. 15 1.1 sp2 hybridization …………………………………………………….……… 16 1.2 Graphene basics ………………………………………………………...… 16 1.3 Single wall carbon nanotubes Basics …………………………… 18 1.4 Synthesis of single wall carbon nanotubes ………………… 24 1.4.1 Arc discharge ………………………………………………… 24 1.4.2 Laser ablation ……………………………………………… 24 1.4.3 Chemical vapor deposition …………………………… 25 1.4.4 The as-produced carbon nanotubes …………… 25 1.5 Potential applications of single wall carbon nanotubes 26 1.6 Challenges face single wall carbon nanotubes ………… 27 2 Horizontally aligned single wall carbon nanotubes: a review of fabrication and characterization ………………………………………………… 29 2.1 Introduction …………………………………………...………………………………………… 29 2.2 The requisites of horizontally aligned single wall carbon nanotubes 31 2.3 Characterization of Horizontally aligned single wall carbon nanotubes 32 2.3.1 Electron microscopy …………………………………………………………… 32 2.3.2 Scanning probe microscopy ……………………………………...…………… 34 2.3.3 Spectroscopy ……………………………………………………………………… 35 2.4 Fabrication of horizontally aligned single wall carbon nanotubes ……… 36 2.4.1 Dielectrophoresis (Growth-then-place) …………………….…………… 36 2.4.2 Chemical vapor deposition (Growth-in-place) ………...…………… 40 2.5 Transistor performance from horizontally aligned single wall carbon nanotubes ……… 67 2.5.1 Field effect transistor ……………….…………...………………………….…… 67 2.5.2 Thin film transistor …………………………….…...…………………….……… 68 3 Dielelectrophoretic deposition of single wall carbon nanotubes 69 3.1 Deposition of single wall carbon nanotubes in between metallic electrodes ………………… 69 3.1.1 Dispersion of single wall carbon nanotubes ………………………… 69 3.1.2 Dielectrophoretic alignment of single wall carbon nanotubes 70 3.2 CNTFET topographical characterization …………..………………………..……… 70 3.3 Dielectrophoresis advantages and drawbacks ………………………….....……… 72 4 Growth of catalyst-assisted horizontally aligned single wall carbon nanotubes …..………..... 75 4.1 Experimental procedure ….………………………………………………………...……… 76 4.1.1 ST-cut quartz substrates preparation ……………………….....……… 76 4.1.2 Catalyst solutions preparation ……………………………........……… 76 4.1.3 Growth of single wall carbon nanotubes ……………………………… 77 4.1.4 Single wall carbon nanotubes transfer into silicon substrates 78 4.2 Substrate thermal treatment ………………………………………………..........……… 79 4.3 Formed catalyst nanoparticles ………………………………………………...……… 82 4.4 As-grown single wall carbon nanotubes ………………...……………..…………… 84 4.5 Transferred single wall carbon nanotubes ………………...………….……...…… 91 4.6 Chapter summary ………………………………………………...…………………………… 92 5 Growth of catalyst-free horizontally aligned single wall carbon nanotubes … 93 5.1 Experimental procedure ………………………………………………………………….… 94 5.1.1 Different fullerene-based structure ……………………...……………… 94 5.1.2 Pre-treatment of fullerene structures …………………………...…….. 95 5.1.3 Growth of catalyst-free single wall carbon nanotubes ………… 96 5.2 Different fullerene structures nucleate the growth of single wall carbon nanotubes …… 97 5.3 C60 nucleated aligned single wall carbon nanotubes .……………...………… 98 5.3.1 Orientation of the as-grown nanotubes …………………………..… 98 5.3.2 Yield of the grown nanotubes ……………………………………………… 99 5.3.3 Activated sp2 caps ……………………………………………………...……….… 103 5.3.4 Type of the grown nanotubes …………………………………...………… 106 5.3.5 Growth mechanism of carbon nanotubes nucleated from fullerene … 109 6 Electrical characterization of the aligned single wall carbon nanotubes ……… 113 6.1 Device fabrication …………………………………………………………………..…………… 114 6.1.1 FET fabrication over the dielectrophoretic deposited carbon nanotubes … 114 6.1.2 Fabrication of the CVD grown nanotubes based device …………114 6.2 Electrical characterization of dielectrophoretic deposited single wall carbon nanotubes 115 6.2.1 I-V characteristics of the dielectrophoretic deposited nanotubes 115 6.2.2 Defect detection ………………………………………………………………..…… 117 6.3 Electrical characterization of the CVD grown nanotubes ……………………… 120 6.3.1 IV-Characteristics of the metal-assisted single wall carbon nanotubes ……… 120 6.3.2 Electrical behaviour of the catalyst-free single wall carbon nanotubes …………122 7 Conclusions and outlook ……………..……………………..………………………… 125 Appendix ……..……………………………………..………………………….……………. 129 Bibliography …...…………………………………..………………………….……………. 133 List of figures ….…………………………………..………………………….……………. 143 Glossary …………..…………………………………..………………………….……………. 147 Publications ………………………………………..………………………….……………. 149 Curriculum vitae ……………………………………..………………..…………………. 153 Acknowledgment ……..…………………………………..…..…………………………. 155 Declaration …………………………………………………..…..…………………………. 157
Yu, Mingru, and 余明儒. "PartI. Effect Of ‘Pt’ Loading In ZnO–CuO Hetero-Junction Material Sensing Carbon Monoxide At Room Temperature PartII. Preparation Of Organic-Inorganic (SWCNT/TWEEN-TEOS) Nano Hybrids And Their NO Gas Sensing Properties." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/99834240864807052911.
Full text靜宜大學
應用化學系
100
ABSTRACT(PartI) A study sensing carbon monoxide (CO) was performed with ZnO-CuO and Pt/ZnO-CuO. These materials were characterized by temperature-programmed reduction (TPR), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). Composite materials of ZnO-CuO were found to have an active sensing center, the sensor response was obtained for optimized ratio of ZnO and CuO (1:1 weight ratio) yielded highest response of 1.28 (Rco/Rair) for 1000 ppm of CO at room temperature; the response and recovery times were found to be 41 and 86 s, respectively. However, loading 1:1 ZnO-CuO with 0.4% Pt boosted sensor response to 2.64 (Rco/Rair) for 1000 ppm CO concentration. The sensor responses were calculated for CO concentrations of 100 to 1000 ppm with 0.4% Pt/ZnO-CuO. Both the response and recovery times were found to be 81 s. A mechanism for CO sensor response was put forward with reference to CO adsorption and desorption. ABSTRACT(PartII) Gas sensitive nanostructured hybrid films were synthesized via microwave assisted sol-gel route using Polyoxyethylened (80) sorbitan monooleate (TWEEN 80) and tetraethyl orthosilicate (TEOS). TWEEN 80 and TEOS were used as organic and inorganic precursors respectively. FT-IR spectra of the TWEEN 80/TEOS nanohybrid material revealed the formation of organic- inorganic networks between TWEEN 80 and TEOS. XRD spectra and micrographs showed the formation of TWEEN 80/TEOS amorphous nano hybrid film like structures. Surface roughness was measured using an AFM was 1150 nm and measured film thicknesses were between 18-20 µm. 1 % SWCNT (single walled carbon nanotube)/TTH (Tween 80/TEOS nano hybrids) named as 1 % CNT/TTH, CNT/TTH sensor response for 30 to 100 ppb NO concentrations was R2 = 0.9958. Hybrid films have showed better sensor response and faster response time (t90; 290 s). Using Material Studio software, the adsorption phenomena were explained to that of NO gas sensing property.
Jalan, Salil Kanj. "Mechanical Characterization of Carbon Nanotubes and Nanocomposites." Thesis, 2015. http://etd.iisc.ernet.in/2005/3968.
Full textSingh, Laishram Tomba. "Synthesis Of Various Carbon Nanostructures And The Transport Properties Of Carbon Nanotubes." Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/1940.
Full textRex, A. "Physics Based Analytical Thermal Conductivity Model For Metallic Single Walled Carbon Nanotube." Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2096.
Full textVerma, Rekha. "Investigation of Electro-thermal and Thermoelectric Properties of Carbon Nanomaterials." Thesis, 2013. http://etd.iisc.ernet.in/2005/3360.
Full text