Contents
Academic literature on the topic 'Suzuki polymerization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Suzuki polymerization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Suzuki polymerization"
Bautista, Michael V., Anthony J. Varni, Josué Ayuso-Carrillo, Matthew C. Carson, and Kevin J. T. Noonan. "Pairing Suzuki–Miyaura cross-coupling and catalyst transfer polymerization." Polymer Chemistry 12, no. 10 (2021): 1404–14. http://dx.doi.org/10.1039/d0py01507e.
Full textNamgung, Ho, Jeong Jun Lee, Young Jin Gwon, and Taek Seung Lee. "Synthesis of tetraphenylethylene-based conjugated microporous polymers for detection of nitroaromatic explosive compounds." RSC Advances 8, no. 60 (2018): 34291–96. http://dx.doi.org/10.1039/c8ra06463f.
Full textGuo, Ting, Wenkai Zhong, Jianhua Zou, Lei Ying, Wei Yang, and Junbiao Peng. "Efficient binary white light-emitting polymers grafted with iridium complexes as side groups." RSC Advances 5, no. 109 (2015): 89888–94. http://dx.doi.org/10.1039/c5ra16717e.
Full textWang, Ziyu, Cheng Wang, Yayun Fang, Hong Yuan, Yiwu Quan, and Yixiang Cheng. "Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy via intramolecular FRET mechanism." Polymer Chemistry 9, no. 23 (2018): 3205–14. http://dx.doi.org/10.1039/c8py00329g.
Full textDai, Chunhui, Dongliang Yang, Xiao Fu, Qingmin Chen, Chengjian Zhu, Yixiang Cheng, and Lianhui Wang. "A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging." Polymer Chemistry 6, no. 28 (2015): 5070–76. http://dx.doi.org/10.1039/c5py00733j.
Full textYokozawa, Tsutomu, Yutaka Nanashima, Haruhiko Kohno, Ryosuke Suzuki, Masataka Nojima, and Yoshihiro Ohta. "Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers." Pure and Applied Chemistry 85, no. 3 (August 12, 2012): 573–87. http://dx.doi.org/10.1351/pac-con-12-03-13.
Full textSugita, Hajime, Masataka Nojima, Yoshihiro Ohta, and Tsutomu Yokozawa. "Unstoichiometric Suzuki–Miyaura cyclic polymerization of extensively conjugated monomers." Polymer Chemistry 10, no. 10 (2019): 1182–85. http://dx.doi.org/10.1039/c8py01741g.
Full textWang, Yunshu, Shuangshuang Zhang, Laibing Wang, Wei Zhang, Nianchen Zhou, Zhengbiao Zhang, and Xiulin Zhu. "The Suzuki coupling reaction as a post-polymerization modification: a promising protocol for construction of cyclic-brush and more complex polymers." Polymer Chemistry 6, no. 25 (2015): 4669–77. http://dx.doi.org/10.1039/c5py00551e.
Full textSugita, Hajime, Masataka Nojima, Yoshihiro Ohta, and Tsutomu Yokozawa. "Unusual cyclic polymerization through Suzuki–Miyaura coupling of polyphenylene bearing diboronate at both ends with excess dibromophenylene." Chemical Communications 53, no. 2 (2017): 396–99. http://dx.doi.org/10.1039/c6cc08333a.
Full textWang, Haiqing, Dehui Sun, Qichen Lu, Fulei Wang, Lili Zhao, Zengfu Zhang, Xun Wang, and Hong Liu. "Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions." Nanoscale 11, no. 12 (2019): 5240–46. http://dx.doi.org/10.1039/c9nr00707e.
Full textDissertations / Theses on the topic "Suzuki polymerization"
Elmalem, Einat. "Synthesis of π-conjugated polymers via Suzuki cross-coupling polymerization." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608242.
Full textFischer, Christoph Siegfried Winfried [Verfasser]. "Luminescent Conjugated Polymer Nanoparticles from Suzuki-Miyaura Chain-Growth Polymerization / Christoph Siegfried Winfried Fischer." Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1105479110/34.
Full textHeimonen, Johanna. "Synthesis of a polar conjugated polythiophene for 3D-printing of complex coacervates." Thesis, Linköpings universitet, Laboratoriet för organisk elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177396.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Yang, Ya-Zhu, and 楊雅筑. "Synthesis of linear and hyperbranched indole-functionalized conjugated polyfluorenes via Suzuki polymerization in miniemulsion." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/39847358565939876262.
Full text元智大學
化學工程與材料科學學系
104
This study describes the synthesis of linear (LCF) and hyperbranched conjugated polyfluorenes (HCF) containing various end-capping agents (phenyl and indole groups) in the main chain, through conventional Suzuki and Suzuki coupling polymerization in miniemulsion. The optical, photophysical, and electrochemical properties, and polymeric morphologies of conjugated polymers were characterized using UV-vis, PL, CV, SEM, TEM, and DLS methods. The corresponding intramolecular charge and energy transfers were also investigated. The weight-average molecular weights (Mws) of LCF-B and LCF-I, using conventional Suzuki coupling polymerization, were 4225 and 1436 g/mol, with the corresponding polydispersity indices of 1.33 and 1.19, respectively. These synthesized polymers exhibited the decomposition temperatures (Tds) in the range of 214 and 373 oC. The glass transition temperatures (Tgs) were in the range of 107 and 144 oC. In THF, these polymers showed strong absorption that peaked at approximately 350 nm, resulting from π-π* electronic transitions within the polymer backbone. The fluorescence spectra of indole-based polymers showed broad peaks in the range of 375-500 nm. The estimated HOMO and LUMO energy levels of polymers were similar, as confirmed by CV. The energy bandgaps (Egs) of HCFs were larger than those of LCFs, using density functional theory (DFT) calculations. The spherical particles of polymers, using Suzuki coupling polymerization in miniemulsion, with average diameter in the range of 62.5~168.2 nm and 2.5~ 26.75 nm can be confirmed clearly by SEM, TEM images and dynamic laser scattering (DLS) measurements, respectively. In order to compare the role of structure and dimensionality on the specific surface area and porosity, nitrogen sorption experiments for LCFs and HCFs, using Suzuki coupling polymerization in miniemulsion, will also conducted. The chemosensory applications will also be studied.
Chen, Ming-Tsz, and 陳銘賜. "Palladacyclic Complexes Bearing Four-membered Ring Diimine Ligands with Different Functionalities as Catalysts in Suzuki and Heck ReactionsMagnesium Anilido-Oxazolinate Complexes as Catalysts for Ring Opening Polymerization of L-Lactide." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/43043357143502906268.
Full text國立中興大學
化學系所
96
The thesis discusses some palladacycles and magnesium complexes applied in catalytic reactions. For convenience and better understanding, the thesis is divided into two parts. The first part describes palladium-catalyzed reactions and the second part deals with ROP reaction catalyzed with magnesium complexes. Part one-A: Preparation of novel unsymmetrical, tridentate sulfur-containing ligand precursors, PhN=C(CMe2)(NPh)C=N(CH2)2SR [R=CMe3, Ph] are described. Reaction of ligand precursors with one molar equivalent of Pd(OAc)2 yields palladium(II) complexes, [PhN=C(CMe2)(N-η1-Ph)C=N(CH2)2SR]Pd(OAc). Treatment of orthometallated palladium(II) acetate complexes with excess of LiCl in methanol gives the complexes [PhN=C(CMe2)(N-η1-Ph)C=N(CH2)2SR]PdCl. Molecular structures have been determined by X-ray diffraction. The application of those novel palladacyclic complexes to the Suzuki and Heck reactions with aryl halide substrates was examined. Part one-B: Four new ligand precursors, PhN=C(CMe2)(NPh)C=N(E) [E =(CH2)2OMe, CH2C(=O)OMe, (CH2)2CH3, and C6H5] are reported. Treatment of ligand precursors with one molar equivalent Pd(OAc)2 in THF or CH3CN affords aceto-bridged palladium(II) complexes, [{PhN=C(CMe2)(N-η1-Ph)C=N(E)}Pd(OAc)]2, as di-nuclear palladium complexes. Reactions of Palladium(II) complexes with excess saturated NaCl(aq) in acetone afford orthometallated dimer or monomer palladium(II) complexes, as [{PhN=C(CMe2)(N-η1-Ph)C=N(CH2)2CH3}PdCl]2 or [PhN=C(CMe2)(N-η1-Ph)C=N(E)]PdCl. The crystal and molecular structures are reported and the catalytic activities of these palladacycles toward the Suzuki and Heck reactions are investigated. Part two: A new series of mononuclear magnesium complexes of type L2Mg (where L = anilido-oxazolinate ligands bearing different functional groups) has been prepared. The activities of magnesium complexes toward the ring opening polymerization of L-lactide have been investigated. Experimental results show that L2Mg complexes efficiently initiate the ring-opening polymerization of L-Lactide in the presence of benzyl alcohol and yielding polymers in a controlled fashion.
Wen-Chou, Hung, and 洪文周. "Synthesis and Characterization of Schiff Base Metal Complexes and Their Applications in Ring Opening Polymerizations and Suzuki Coupling Reactions." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/74420072594123386368.
Full text