To see the other types of publications on this topic, follow the link: Surveillance immune.

Journal articles on the topic 'Surveillance immune'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Surveillance immune.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shastri, Nilabh, Chansu Park, and Jian Guan. "Immune surveillance of immune surveillance." Molecular Immunology 150 (October 2022): 2. http://dx.doi.org/10.1016/j.molimm.2022.05.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Swann, Jeremy B., and Mark J. Smyth. "Immune surveillance of tumors." Journal of Clinical Investigation 117, no. 5 (May 1, 2007): 1137–46. http://dx.doi.org/10.1172/jci31405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grossman, Zvi, and Ronald B. Herberman. "‘Immune surveillance’ without immunogenicity." Immunology Today 7, no. 5 (May 1986): 128–31. http://dx.doi.org/10.1016/0167-5699(86)90075-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prehn, Richmond T., and Liisa M. Prehn. "The flip side of immune surveillance: immune dependency." Immunological Reviews 222, no. 1 (April 2008): 341–56. http://dx.doi.org/10.1111/j.1600-065x.2008.00609.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Ryungsa, Manabu Emi, and Kazuaki Tanabe. "Cancer immunoediting from immune surveillance to immune escape." Immunology 121, no. 1 (May 2007): 1–14. http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schaller, Julien, and Judith Agudo. "Metastatic Colonization: Escaping Immune Surveillance." Cancers 12, no. 11 (November 16, 2020): 3385. http://dx.doi.org/10.3390/cancers12113385.

Full text
Abstract:
Cancer immunotherapy has shifted the paradigm in cancer therapy by revitalizing immune responses against tumor cells. Specifically, in primary tumors cancer cells evolve in an immunosuppressive microenvironment, which protects them from immune attack. However, during tumor progression, some cancer cells leave the protective tumor mass, disseminating and seeding secondary organs. These initial disseminated tumor cells (DTCs) should potentially be susceptible to recognition by the immune system in the new host tissues. Although Natural Killer or T cells eliminate some of these DTCs, a fraction escape anti-tumor immunity and survive, thus giving rise to metastatic colonization. How DTCs interact with immune cells and the underpinnings that regulate imperfect immune responses during tumor dissemination remain poorly understood. Uncovering such mechanisms of immune evasion may contribute to the development of immunotherapy specifically targeting DTCs. Here we review current knowledge about systemic and site-specific immune-cancer crosstalk in the early steps of metastasis formation. Moreover, we highlight how conventional cancer therapies can shape the pre-metastatic niche enabling immune escape of newly arrived DTCs.
APA, Harvard, Vancouver, ISO, and other styles
7

Lowe, Scott. "Immune Surveillance of Senescent Cells." Innovation in Aging 5, Supplement_1 (December 1, 2021): 246. http://dx.doi.org/10.1093/geroni/igab046.952.

Full text
Abstract:
Abstract Cellular senescence involves a stable cell cycle arrest and a secretory program that modulates the tissue environment. In cancer, senescence acts as a potent barrier to tumorigenesis and, though many cancers evade senescence during the course of tumor evolution, ionizing radiation and conventional chemotherapy can, to varying degrees, induce senescence in tumor cells leading to potent anticancer effects. Conversely, the aberrant accumulation of senescent cells can reduce regenerative capacity and lead to tissue decline, contributing to tissue pathologies associated with age or the debilitating side-effects of cancer therapy. Our laboratory studies mechanisms of cellular senescence with the ultimate goal of developing strategies to modulate senescence for therapeutic benefit. We have focused on how senescent cells trigger immune surveillance to facilitate their own elimination or, when that fails, how synthetic immune cells (i.e. CAR T cells) can be directed to eliminate senescent cells. Recent advances in understanding senescent cell surveillance by the immune system will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmad, Aamir. "Tumor microenvironment and immune surveillance." Microenvironment and Microecology Research 4, no. 1 (2022): 6. http://dx.doi.org/10.53388/mmr2022006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oh, Julia, and Derya Unutmaz. "Immune cells for microbiota surveillance." Science 366, no. 6464 (October 24, 2019): 419–20. http://dx.doi.org/10.1126/science.aaz4014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zanetti, M., and N. R. Mahadevan. "Immune Surveillance from Chromosomal Chaos?" Science 337, no. 6102 (September 27, 2012): 1616–17. http://dx.doi.org/10.1126/science.1228464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Alderton, Gemma. "Immune surveillance of the brain." Science 366, no. 6472 (December 19, 2019): 1467.18–1469. http://dx.doi.org/10.1126/science.366.6472.1467-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zinkernagel, Rolf, and Paul Klenerman. "Immune surveillance and AIDS progression." Current Biology 7, no. 7 (July 1997): R403—R405. http://dx.doi.org/10.1016/s0960-9822(06)00201-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nagarajan, Niranjana A., and Nilabh Shastri. "Immune surveillance for ERAAP dysfunction." Molecular Immunology 55, no. 2 (September 2013): 120–22. http://dx.doi.org/10.1016/j.molimm.2012.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schmid, Dorothee, and Christian Münz. "Immune Surveillance via Self Digestion." Autophagy 3, no. 2 (March 27, 2007): 133–35. http://dx.doi.org/10.4161/auto.3591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Branch, Pauline, David C. Bicknell, Andrew Rowan, Walter F. Bodmer, and Peter Karran. "Immune surveillance in colorectal carcinoma." Nature Genetics 9, no. 3 (March 1995): 231–32. http://dx.doi.org/10.1038/ng0395-231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jenne, Craig N., and Paul Kubes. "Immune surveillance by the liver." Nature Immunology 14, no. 10 (September 18, 2013): 996–1006. http://dx.doi.org/10.1038/ni.2691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zanetti, Maurizio. "Chromosomal chaos silences immune surveillance." Science 355, no. 6322 (January 19, 2017): 249–50. http://dx.doi.org/10.1126/science.aam5331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ferrone, S. "Melanoma, immune surveillance, and immunotherapy." Journal of Clinical Investigation 93, no. 4 (April 1, 1994): 1351–52. http://dx.doi.org/10.1172/jci117108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Damhofer, Helene, and Kristian Helin. "EZH2i unlocks PDAC immune surveillance." Nature Cancer 4, no. 6 (June 27, 2023): 781–83. http://dx.doi.org/10.1038/s43018-023-00562-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Caruso, Roberta, and Grace Y. Chen. "High fat stems tumor immune surveillance." Cell Reports Medicine 2, no. 12 (December 2021): 100483. http://dx.doi.org/10.1016/j.xcrm.2021.100483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Oluwadara, Oluwadayo O., Andre Barkhordarian, Luca Giacomelli, Xenia Brant, and Francesco Chiappelli. "Immune surveillance of nasopharyngeal carcinoma (NpC)." Bioinformation 7, no. 5 (October 31, 2011): 271–75. http://dx.doi.org/10.6026/97320630007271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jobim, Mariana, and Luiz F. J. Jobim. "Natural killer cells and immune surveillance." Jornal de Pediatria 84, no. 7 (September 29, 2008): 58–67. http://dx.doi.org/10.2223/jped.1780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Monzavi-Karbassi, Behjatolah, Anastas Pashov, and Thomas Kieber-Emmons. "Tumor-Associated Glycans and Immune Surveillance." Vaccines 1, no. 2 (June 17, 2013): 174–203. http://dx.doi.org/10.3390/vaccines1020174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shin, Hwain, Manuela Mally, Marina Kuhn, Cecile Paroz, and Guy R. Cornelis. "Escape from Immune Surveillance byCapnocytophaga canimorsus." Journal of Infectious Diseases 195, no. 3 (February 2007): 375–86. http://dx.doi.org/10.1086/510243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gruenbacher, Georg, and Martin Thurnher. "Mevalonate metabolism governs cancer immune surveillance." OncoImmunology 6, no. 10 (July 27, 2017): e1342917. http://dx.doi.org/10.1080/2162402x.2017.1342917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Eiselein, M. W. Biggs and J. E. "Suppression of immune surveillance in melanoma." Medical Hypotheses 56, no. 6 (June 2001): 648–52. http://dx.doi.org/10.1054/mehy.2000.1211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Smyth, Mark J., Ilia Voskoboinik, and Joseph A. Trapani. "Immune surveillance of lymphoma in humans?" Blood 105, no. 11 (June 1, 2005): 4159–60. http://dx.doi.org/10.1182/blood-2005-03-1019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

den Hartog, Gerco, Rob van Binnendijk, Anne-Marie Buisman, Guy A. M. Berbers, and Fiona R. M. van der Klis. "Immune surveillance for vaccine-preventable diseases." Expert Review of Vaccines 19, no. 4 (March 29, 2020): 327–39. http://dx.doi.org/10.1080/14760584.2020.1745071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Agranovich, Alexandra, Tal Vider-Shalit, and Yoram Louzoun. "Optimal viral immune surveillance evasion strategies." Theoretical Population Biology 80, no. 4 (December 2011): 233–43. http://dx.doi.org/10.1016/j.tpb.2011.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pawelec, Graham. "MHC-Unrestricted Immune Surveillance of Leukemia1." Cancer Biotherapy 9, no. 3 (January 1994): 265–88. http://dx.doi.org/10.1089/cbr.1994.9.265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Starck, S. R., S. Cardinaud, and N. Shastri. "Immune surveillance obstructed by viral mRNA." Proceedings of the National Academy of Sciences 105, no. 27 (July 1, 2008): 9135–36. http://dx.doi.org/10.1073/pnas.0804456105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mahasa, Khaphetsi Joseph, Rachid Ouifki, Amina Eladdadi, and Lisette de Pillis. "Mathematical model of tumor–immune surveillance." Journal of Theoretical Biology 404 (September 2016): 312–30. http://dx.doi.org/10.1016/j.jtbi.2016.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Newcombe, D. S. "Immune surveillance, organophosphorus exposure, and lymphomagenesis." Lancet 339, no. 8792 (February 1992): 539–41. http://dx.doi.org/10.1016/0140-6736(92)90349-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chow, Melvyn T., Andreas Möller, and Mark J. Smyth. "Inflammation and immune surveillance in cancer." Seminars in Cancer Biology 22, no. 1 (February 2012): 23–32. http://dx.doi.org/10.1016/j.semcancer.2011.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Noble, Kim A. "Rheumatoid Arthritis: Immune Surveillance Gone Wild?" Journal of PeriAnesthesia Nursing 26, no. 2 (April 2011): 110–15. http://dx.doi.org/10.1016/j.jopan.2011.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kandalaft, Lana E., Gregory T. Motz, Jaikumar Duraiswamy, and George Coukos. "Tumor immune surveillance and ovarian cancer." Cancer and Metastasis Reviews 30, no. 1 (February 8, 2011): 141–51. http://dx.doi.org/10.1007/s10555-011-9289-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Boyd, Ashleigh S., and Neil P. Rodrigues. "Stem Cells Cycle toward Immune Surveillance." Immunity 48, no. 2 (February 2018): 187–90. http://dx.doi.org/10.1016/j.immuni.2018.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Young, Richard A., and Timothy J. Elliott. "Stress proteins, infection, and immune surveillance." Cell 59, no. 1 (October 1989): 5–8. http://dx.doi.org/10.1016/0092-8674(89)90861-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zimmermann, Valerie S., Fabio Benigni, and Anna Mondino. "Immune surveillance and anti-tumor immune responses: an anatomical perspective." Immunology Letters 98, no. 1 (April 2005): 1–8. http://dx.doi.org/10.1016/j.imlet.2004.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Garcia-Lora, Angel, Ignacio Algarra, and Federico Garrido. "MHC class I antigens, immune surveillance, and tumor immune escape." Journal of Cellular Physiology 195, no. 3 (2003): 346–55. http://dx.doi.org/10.1002/jcp.10290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Töpfer, Katrin, Stefanie Kempe, Nadja Müller, Marc Schmitz, Michael Bachmann, Marc Cartellieri, Gabriele Schackert, and Achim Temme. "Tumor Evasion from T Cell Surveillance." Journal of Biomedicine and Biotechnology 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/918471.

Full text
Abstract:
An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.
APA, Harvard, Vancouver, ISO, and other styles
42

Guan, Jian, Josiah David Peske, Joshua A. Taylor, and Nilabh Shastri. "The nonclassical immune surveillance for ERAAP function." Current Opinion in Immunology 70 (June 2021): 105–11. http://dx.doi.org/10.1016/j.coi.2021.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ousman, Shalina S., and Paul Kubes. "Immune surveillance in the central nervous system." Nature Neuroscience 15, no. 8 (July 26, 2012): 1096–101. http://dx.doi.org/10.1038/nn.3161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Prolo, P., F. Chiappelli, G. Bernard, M. Fiala, A. Ibarra, M. L. Sartori, A. Dovio, and A. Angeli. "Neuroendocrine-Immune Surveillance of Osteosarcoma: Emerging Hypothesis." Journal of Dental Research 82, no. 6 (June 2003): 417–21. http://dx.doi.org/10.1177/154405910308200603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moser, B. "Chemokines: role in inflammation and immune surveillance." Annals of the Rheumatic Diseases 63, suppl_2 (November 1, 2004): ii84—ii89. http://dx.doi.org/10.1136/ard.2004.028316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Schmid, D., and C. Münz. "Immune surveillance of intracellular pathogens via autophagy." Cell Death & Differentiation 12, S2 (October 25, 2005): 1519–27. http://dx.doi.org/10.1038/sj.cdd.4401727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kim, Tae Hyun, and Sang Geon Kim. "Role of CXCR6 in Antitumor Immune Surveillance." Gastroenterology 156, no. 6 (May 2019): 1565–68. http://dx.doi.org/10.1053/j.gastro.2019.03.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Di Francesco, P., F. Pica, L. Belogi, C. Croce, C. Favalli, E. Tubaro, and E. Garaci. "Influence of cocaine on murine immune surveillance." Pharmacological Research 22 (September 1990): 165. http://dx.doi.org/10.1016/s1043-6618(09)80208-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Feinberg, Mark B., and Angela R. McLean. "AIDS: Decline and fall of immune surveillance?" Current Biology 7, no. 3 (March 1997): R136—R140. http://dx.doi.org/10.1016/s0960-9822(97)70072-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wekerle, Hartmut. "Immune reactivity and surveillance in the CNS." Journal of Neuroimmunology 38, no. 1-2 (May 1992): 179. http://dx.doi.org/10.1016/0165-5728(92)90123-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography