Academic literature on the topic 'Surrogate methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surrogate methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Surrogate methods"
Ciani, Oriana, Sarah Davis, Paul Tappenden, Ruth Garside, Ken Stein, Anna Cantrell, Everardo D. Saad, Marc Buyse, and Rod S. Taylor. "VALIDATION OF SURROGATE ENDPOINTS IN ADVANCED SOLID TUMORS: SYSTEMATIC REVIEW OF STATISTICAL METHODS, RESULTS, AND IMPLICATIONS FOR POLICY MAKERS." International Journal of Technology Assessment in Health Care 30, no. 3 (July 2014): 312–24. http://dx.doi.org/10.1017/s0266462314000300.
Full textRios, Ricardo Araújo, Michael Small, and Rodrigo Fernandes de Mello. "Testing for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series." International Journal of Bifurcation and Chaos 25, no. 01 (January 2015): 1550013. http://dx.doi.org/10.1142/s0218127415500133.
Full textHernandez-Villafuerte, Karla, Alastair Fischer, and Nicholas Latimer. "CHALLENGES AND METHODOLOGIES IN USING PROGRESSION FREE SURVIVAL AS A SURROGATE FOR OVERALL SURVIVAL IN ONCOLOGY." International Journal of Technology Assessment in Health Care 34, no. 3 (2018): 300–316. http://dx.doi.org/10.1017/s0266462318000338.
Full textLu, Dan, and Daniel Ricciuto. "Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques." Geoscientific Model Development 12, no. 5 (May 6, 2019): 1791–807. http://dx.doi.org/10.5194/gmd-12-1791-2019.
Full textCiani, Oriana, Bogdan Grigore, Hedwig Blommestein, Saskia de Groot, Meilin Möllenkamp, Stefan Rabbe, Rita Daubner-Bendes, and Rod S. Taylor. "Validity of Surrogate Endpoints and Their Impact on Coverage Recommendations: A Retrospective Analysis across International Health Technology Assessment Agencies." Medical Decision Making 41, no. 4 (March 10, 2021): 439–52. http://dx.doi.org/10.1177/0272989x21994553.
Full textScher, Howard I., Glenn Heller, Arturo Molina, Gerhardt Attard, Daniel C. Danila, Xiaoyu Jia, Weimin Peng, et al. "Circulating Tumor Cell Biomarker Panel As an Individual-Level Surrogate for Survival in Metastatic Castration-Resistant Prostate Cancer." Journal of Clinical Oncology 33, no. 12 (April 20, 2015): 1348–55. http://dx.doi.org/10.1200/jco.2014.55.3487.
Full textHu, Zhen, Saideep Nannapaneni, and Sankaran Mahadevan. "Efficient Kriging surrogate modeling approach for system reliability analysis." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31, no. 2 (May 2017): 143–60. http://dx.doi.org/10.1017/s089006041700004x.
Full textOko, S. O. "Surrogate methods for linear inequalities." Journal of Optimization Theory and Applications 72, no. 2 (February 1992): 247–68. http://dx.doi.org/10.1007/bf00940518.
Full textKim, Hyejin, Janet A. Deatrick, and Connie M. Ulrich. "Ethical frameworks for surrogates’ end-of-life planning experiences." Nursing Ethics 24, no. 1 (August 3, 2016): 46–69. http://dx.doi.org/10.1177/0969733016638145.
Full textRoyce, Trevor Joseph, Ming-Hui Chen, Jing Wu, Marian Loffredo, Andrew A. Renshaw, Philip W. Kantoff, and Anthony Victor D'Amico. "A comparison of surrogate endpoints for all cause mortality in men with localized unfavorable-risk prostate cancer." Journal of Clinical Oncology 35, no. 6_suppl (February 20, 2017): 21. http://dx.doi.org/10.1200/jco.2017.35.6_suppl.21.
Full textDissertations / Theses on the topic "Surrogate methods"
Conradie, Tanja. "Modelling of nonlinear dynamic systems : using surrogate data methods." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51834.
Full textENGLISH ABSTRACT: This study examined nonlinear modelling techniques as applied to dynamic systems, paying specific attention to the Method of Surrogate Data and its possibilities. Within the field of nonlinear modelling, we examined the following areas of study: attractor reconstruction, general model building techniques, cost functions, description length, and a specific modelling methodology. The Method of Surrogate Data was initially applied in a more conventional application, i.e. testing a time series for nonlinear, dynamic structure. Thereafter, it was used in a less conventional application; i.e. testing the residual vectors of a nonlinear model for membership of identically and independently distributed (i.i.d) noise. The importance of the initial surrogate analysis of a time series (determining whether the apparent structure of the time series is due to nonlinear, possibly chaotic behaviour) was illustrated. This study confrrmed that omitting this crucial step could lead to a flawed conclusion. If evidence of nonlinear structure in the time series was identified, a radial basis model was constructed, using sophisticated software based on a specific modelling methodology. The model is an iterative algorithm using minimum description length as the stop criterion. The residual vectors of the models generated by the algorithm, were tested for membership of the dynamic class described as i.i.d noise. The results of this surrogate analysis illustrated that, as the model captures more of the underlying dynamics of the system (description length decreases), the residual vector resembles Li.d noise. It also verified that the minimum description length criterion leads to models that capture the underlying dynamics of the time series, with the residual vector resembling Li.d noise. In the case of the "worst" model (largest description length), the residual vector could be distinguished from Li.d noise, confirming that it is not the "best" model. The residual vector of the "best" model (smallest description length), resembled Li.d noise, confirming that the minimum description length criterion selects a model that captures the underlying dynamics of the time series. These applications were illustrated through analysis and modelling of three time series: a time series generated by the Lorenz equations, a time series generated by electroencephalograhpic signal (EEG), and a series representing the percentage change in the daily closing price of the S&P500 index.
AFRIKAANSE OPSOMMING: In hierdie studie ondersoek ons nie-lineere modelleringstegnieke soos toegepas op dinamiese sisteme. Spesifieke aandag word geskenk aan die Metode van Surrogaat Data en die moontlikhede van hierdie metode. Binne die veld van nie-lineere modellering het ons die volgende terreine ondersoek: attraktor rekonstruksie, algemene modelleringstegnieke, kostefunksies, beskrywingslengte, en 'n spesifieke modelleringsalgoritme. Die Metode and Surrogaat Data is eerstens vir 'n meer algemene toepassing gebruik wat die gekose tydsreeks vir aanduidings van nie-lineere, dimanise struktuur toets. Tweedens, is dit vir 'n minder algemene toepassing gebruik wat die residuvektore van 'n nie-lineere model toets vir lidmaatskap van identiese en onafhanlike verspreide geraas. Die studie illustreer die noodsaaklikheid van die aanvanklike surrogaat analise van 'n tydsreeks, wat bepaal of die struktuur van die tydsreeks toegeskryf kan word aan nie-lineere, dalk chaotiese gedrag. Ons bevesting dat die weglating van hierdie analise tot foutiewelike resultate kan lei. Indien bewyse van nie-lineere gedrag in die tydsreeks gevind is, is 'n model van radiale basisfunksies gebou, deur gebruik te maak van gesofistikeerde programmatuur gebaseer op 'n spesifieke modelleringsmetodologie. Dit is 'n iteratiewe algoritme wat minimum beskrywingslengte as die termineringsmaatstaf gebruik. Die model se residuvektore is getoets vir lidmaatskap van die dinamiese klas wat as identiese en onafhanlike verspreide geraas bekend staan. Die studie verifieer dat die minimum beskrywingslengte as termineringsmaatstaf weI aanleiding tot modelle wat die onderliggende dinamika van die tydsreeks vasvang, met die ooreenstemmende residuvektor wat nie onderskei kan word van indentiese en onafhanklike verspreide geraas nie. In die geval van die "swakste" model (grootse beskrywingslengte), het die surrogaat analise gefaal omrede die residuvektor van indentiese en onafhanklike verspreide geraas onderskei kon word. Die residuvektor van die "beste" model (kleinste beskrywingslengte), kon nie van indentiese en onafhanklike verspreide geraas onderskei word nie en bevestig ons aanname. Hierdie toepassings is aan die hand van drie tydsreekse geillustreer: 'n tydsreeks wat deur die Lorenz vergelykings gegenereer is, 'n tydsreeks wat 'n elektroenkefalogram voorstel en derdens, 'n tydsreeks wat die persentasie verandering van die S&P500 indeks se daaglikse sluitingsprys voorstel.
Asritha, Kotha Sri Lakshmi Kamakshi. "Comparing Random forest and Kriging Methods for Surrogate Modeling." Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20230.
Full textKamath, Atul Krishna. "Surrogate-assisted optimisation-based verification & validation." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15637.
Full textHeap, Ryan C. "Real-Time Visualization of Finite Element Models Using Surrogate Modeling Methods." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/6536.
Full textLee, Chang-Hwa 1957. "Analysis of approaches to synchronous faults simulation by surrogate propagation." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276771.
Full textShashidhar, Akhil. "Generalized Volterra-Wiener and surrogate data methods for complex time series analysis." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41619.
Full textIncludes bibliographical references (leaves 133-150).
This thesis describes the current state-of-the-art in nonlinear time series analysis, bringing together approaches from a broad range of disciplines including the non-linear dynamical systems, nonlinear modeling theory, time-series hypothesis testing, information theory, and self-similarity. We stress mathematical and qualitative relationships between key algorithms in the respective disciplines in addition to describing new robust approaches to solving classically intractable problems. Part I presents a comprehensive review of various classical approaches to time series analysis from both deterministic and stochastic points of view. We focus on using these classical methods for quantification of complexity in addition to proposing a unified approach to complexity quantification encapsulating several previous approaches. Part II presents robust modern tools for time series analysis including surrogate data and Volterra-Wiener modeling. We describe new algorithms converging the two approaches that provide both a sensitive test for nonlinear dynamics and a noise-robust metric for chaos intensity.
by Akhil Shashidhar.
M.Eng.
Bilicz, Sandor. "Application of Design-of-Experiment Methods and Surrogate Models in Electromagnetic Nondestructive Evaluation." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00601753.
Full textPeesapati, Lakshmi Narasimham. "Methods To evaluate the effectiveness of certain surrogate measures to assess safety of opposing left-turn interactions." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52324.
Full textThomas, Sarah Nichole. "Decisions to Seek and Share: A Mixed Methods Approach to Understanding Caregivers Surrogate Information Acquisition Behaviors." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595545894518707.
Full textIsaacs, Amitay Engineering & Information Technology Australian Defence Force Academy UNSW. "Development of optimization methods to solve computationally expensive problems." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43758.
Full textBooks on the topic "Surrogate methods"
Alonso, Ariel. Applied Surrogate Endpoint Evaluation Methods with SAS and R. Boca Raton : CRC Press, 2017.: Chapman and Hall/CRC, 2016. http://dx.doi.org/10.1201/9781315372662.
Full textForrester, Alexander I. J. Surrogate models in engineering design: A practical guide. Chichester, West Sussex, England: J. Wiley, 2008.
Find full textMolenberghs, Geert, Marc Buyse, Tomasz Burzykowski, Ariel Alonso, and Theophile Bigirumurame. Applied Surrogate Endpoint Evaluation Methods with SAS and R. Taylor & Francis Group, 2016.
Find full textApplied Surrogate Endpoint Evaluation Methods with SAS and R. Taylor & Francis Group, 2016.
Find full textApplied Surrogate Endpoint Evaluation Methods with SAS and R. Taylor & Francis Group, 2016.
Find full textMolenberghs, Geert, Marc Buyse, Tomasz Burzykowski, Ariel Alonso, and Theophile Bigirumurame. Applied Surrogate Endpoint Evaluation Methods with SAS and R. Taylor & Francis Group, 2016.
Find full textMolenberghs, Geert, Marc Buyse, Tomasz Burzykowski, Ariel Alonso, and Theophile Bigirumurame. Applied Surrogate Endpoint Evaluation Methods with SAS and R. Taylor & Francis Group, 2016.
Find full textAlonso, Ariel. Applied Surrogate Endpoint Evaluation Methods with SAS and R. Taylor & Francis Group, 2020.
Find full textHuffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.
Full text(Editor), Michael E. Burczynski, and John C. Rockett (Editor), eds. Surrogate Tissue Analysis: Genomic, Proteomic, and Metabolomic Approaches. CRC, 2005.
Find full textBook chapters on the topic "Surrogate methods"
Koziel, Slawomir, David Echeverría Ciaurri, and Leifur Leifsson. "Surrogate-Based Methods." In Computational Optimization, Methods and Algorithms, 33–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20859-1_3.
Full textFleming, Thomas R., Victor DeGruttola, and David L. Demets. "Surrogate Endpoints." In Methods and Applications of Statistics in Clinical Trials, 878–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118596005.ch74.
Full textQu, Yongming. "Surrogate Biomarkers." In Statistical Methods in Biomarker and Early Clinical Development, 39–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31503-0_3.
Full textRehbach, Frederik. "Methods/Contributions." In Enhancing Surrogate-Based Optimization Through Parallelization, 29–94. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30609-9_3.
Full textJiang, Ping, Qi Zhou, and Xinyu Shao. "Verification Methods for Surrogate Models." In Surrogate Model-Based Engineering Design and Optimization, 89–113. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0731-1_5.
Full textMolenberghs, Geert, Ziv Shkedy, Burzykowski Tomasz, Marc Buyse, Ariel Alonso Abad, and Wim Van der Elst. "Evaluation of Surrogate Endpoints." In Handbook of Statistical Methods for Randomized Controlled Trials, 567–600. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781315119694-26.
Full textGao, Yuehua, Lih-Sheng Turng, Peng Zhao, and Huamin Zhou. "Optimization Methods Based on Surrogate Models." In Computer Modeling for Injection Molding, 293–312. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118444887.ch11.
Full textYang, Kai, and Katta G. Murty. "Surrogate Constraint Methods for Linear Inequalities." In Combinatorial Optimization, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_2.
Full textAumann, Quirin, Peter Benner, Jens Saak, and Julia Vettermann. "Model Order Reduction Strategies for the Computation of Compact Machine Tool Models." In Lecture Notes in Production Engineering, 132–45. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_10.
Full textKansara, Saket, Sumeet Parashar, and Abdus Samad. "Chapter 3 Surrogate-Assisted Evolutionary Computing Methods." In Evolutionary Computation, 55–80. 3333 Mistwell Crescent, Oakville, ON L6L 0A2, Canada: Apple Academic Press, 2016. http://dx.doi.org/10.1201/9781315366388-4.
Full textConference papers on the topic "Surrogate methods"
Freire Neto, José Ilmar Cruz, and André Britto. "Surrogate Methods Applied to Hyperparameter Optimization Problem." In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/eniac.2022.227594.
Full textPhelivan Soak, H., J. Wackers, R. Pellegrini, A. Serani, M. Diez, R. Perali, M. Sacher, et al. "Hydrofoil Optimization via Automated Multi-Fidelity Surrogate Models." In 10th Conference on Computational Methods in Marine Engineering. CIMNE, 2023. http://dx.doi.org/10.23967/marine.2023.136.
Full textRanftl, Sascha, and Wolfgang von der Linden. "Bayesian Surrogate Analysis and Uncertainty Propagation." In International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/psf2021003006.
Full textWackers, J., H. Pehlivan Solak, R. Pellegrini, A. Serani, and M. Díez. "Error estimation for surrogate models with noisy small-sized training sets." In VIII International Conference on Particle-Based Methods. CIMNE, 2023. http://dx.doi.org/10.23967/c.particles.2023.007.
Full textAlizadeh, Reza, Janet K. Allen, and Farrokh Mistree. "Surrogate Models and Time Series for Flow Prediction on the Red River Dam Network." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-88163.
Full textSimion, Andrei, Michael Collins, and Cliff Stein. "Towards a Convex HMM Surrogate for Word Alignment." In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/d16-1051.
Full textAlbert, Christopher G., Ulrich Callies, and Udo von Toussaint. "Surrogate-Enhanced Parameter Inference for Function-Valued Models." In International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/psf2021003011.
Full textDe Villiers, Dirk. "RECENT ADVANCES IN SURROGATE MODELLING OF REFLECTOR ANTENNA SYSTEMS." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2111.6166.
Full textJacobs, Jan Pieter, and Dirk De Villiers. "SURROGATE MODELING OF ANTENNA RADIATION CHARACTERISTICS BY GAUSSIAN PROCESSES." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2113.7849.
Full textKotti, M., R. Gonzalez-Echevarria, E. Roca, R. Castro-Lopez, F. V. Fernandez, M. Fakhfakh, J. Sieiro, and J. M. Lopez-Villegas. "Surrogate models of Pareto-optimal planar inductors." In 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2012. http://dx.doi.org/10.1109/smacd.2012.6339412.
Full textReports on the topic "Surrogate methods"
Stromer, Bobbi, Rebecca Crouch, Katrinka Wayne, Ashley Kimble, Jared Smith, and Anthony Bednar. Methods for simultaneous determination of 29 legacy and insensitive munition (IM) constituents in aqueous, soil-sediment, and tissue matrices by high-performance liquid chromatography (HPLC). Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/1168142105.
Full textHart, Carl R., D. Keith Wilson, Chris L. Pettit, and Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, July 2021. http://dx.doi.org/10.21079/11681/41182.
Full textWalizer, Laura, Robert Haehnel, Luke Allen, and Yonghu Wenren. Application of multi-fidelity methods to rotorcraft performance assessment. Engineer Research and Development Center (U.S.), May 2024. http://dx.doi.org/10.21079/11681/48474.
Full textLiu, Tong, and Hadi Meidani. Artificial Intelligence for Optimal Truck Platooning: Impact on Autonomous Freight Delivery. Illinois Center for Transportation, August 2023. http://dx.doi.org/10.36501/0197-9191/23-017.
Full textMudge, Christopher, Glenn Suir, and Benjamin Sperry. Unmanned aircraft systems and tracer dyes : potential for monitoring herbicide spray distribution. Engineer Research and Development Center (U.S.), October 2023. http://dx.doi.org/10.21079/11681/47705.
Full textTreadwell, Jonathan R., James T. Reston, Benjamin Rouse, Joann Fontanarosa, Neha Patel, and Nikhil K. Mull. Automated-Entry Patient-Generated Health Data for Chronic Conditions: The Evidence on Health Outcomes. Agency for Healthcare Research and Quality (AHRQ), March 2021. http://dx.doi.org/10.23970/ahrqepctb38.
Full textField, Richard V. ,. Jr, and .). A decision-theoretic method for surrogate model selection. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/882352.
Full textBurke, J., L. Bernstein, J. Escher, L. Ahle, J. Church, F. Dietrich, K. Moody, et al. Deducing the 237U(n,f) cross-section using the Surrogate Ratio Method. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/883605.
Full textCrouch, Rebecca, Jared Smith, Bobbi Stromer, Christian Hubley, Samuel Beal, Guilherme Lotufo, Afrachanna Butler, et al. Methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41720.
Full textEscher, J. Benchmark and Assessment of the Surrogate Reaction Method for Determining Unknown (n,n') and (n,2n) Reaction Cross Sections. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1884627.
Full text