Journal articles on the topic 'Surface wave microwave discharge'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Surface wave microwave discharge.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Булат, П. В., Л. П. Грачев, И. И. Есаков, and А. А. Раваев. "Граничное значение поля, разделяющее области подкритических и глубоко подкритических видов СВЧ-разряда, зажигаемого на диэлектрической поверхности." Журнал технической физики 89, no. 1 (2019): 64. http://dx.doi.org/10.21883/jtf.2019.01.46963.128-18.
Full textZhukov, V. I., D. M. Karfidov, and K. F. Sergeichev. "Propagation of microwave surface-wave-sustained discharge in air." Journal of Physics: Conference Series 1383 (November 2019): 012021. http://dx.doi.org/10.1088/1742-6596/1383/1/012021.
Full textYanguas-Gil, A., J. L. Hueso, J. Cotrino, A. Caballero, and A. R. González-Elipe. "Reforming of ethanol in a microwave surface-wave plasma discharge." Applied Physics Letters 85, no. 18 (November 2004): 4004–6. http://dx.doi.org/10.1063/1.1808875.
Full textYanagita, Norihito, Toshifumi Itagaki, and Makoto Katsurai. "Experimental Investigations on Discharge Characteristicsof Plane Type Surface Wave Microwave Plasma." IEEJ Transactions on Fundamentals and Materials 121, no. 1 (2001): 44–51. http://dx.doi.org/10.1541/ieejfms1990.121.1_44.
Full textRakem, Z., P. Leprince, and J. Marec. "Modelling of a microwave discharge created by a standing surface wave." Journal of Physics D: Applied Physics 25, no. 6 (June 14, 1992): 953–59. http://dx.doi.org/10.1088/0022-3727/25/6/009.
Full textAZARENKOV, N. A., I. B. DENISENKO, and K. N. OSTRIKOV. "Microwave gas discharge produced and sustained by a surface wave propagating along a cylindrical metal antenna with a dielectric coating." Journal of Plasma Physics 59, no. 1 (January 1998): 15–26. http://dx.doi.org/10.1017/s0022377897006272.
Full textAzarenkov, N. A., V. O. Girka, and I. V. Pavlenko. "Microwave Gas Discharge Sustained by the Azimuthal Surface Waves." Contributions to Plasma Physics 40, no. 5-6 (September 2000): 529–36. http://dx.doi.org/10.1002/1521-3986(200009)40:5/6<529::aid-ctpp529>3.0.co;2-1.
Full textChen, Guoxing, Tiago Silva, Violeta Georgieva, Thomas Godfroid, Nikolay Britun, Rony Snyders, and Marie Paule Delplancke-Ogletree. "Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge." International Journal of Hydrogen Energy 40, no. 9 (March 2015): 3789–96. http://dx.doi.org/10.1016/j.ijhydene.2015.01.084.
Full textCzylkowski, D., M. Jasiński, J. Mizeraczyk, and Z. Zakrzewski. "Argon and neon plasma columns in continuous surface wave microwave discharge at atmospheric pressure." Czechoslovak Journal of Physics 56, S2 (October 2006): B684—B689. http://dx.doi.org/10.1007/s10582-006-0271-7.
Full textBogdanov, Todor, Ivan Tsonev, Plamena Marinova, Evgenia Benova, Krasimir Rusanov, Mila Rusanova, Ivan Atanassov, Zdenka Kozáková, and František Krčma. "Microwave Plasma Torch Generated in Argon for Small Berries Surface Treatment." Applied Sciences 8, no. 10 (October 10, 2018): 1870. http://dx.doi.org/10.3390/app8101870.
Full textGhanashev, Ivan, Masaaki Nagatsu, Ge Xu, and Hideo Sugai. "Mode Jumps and Hysteresis in Surface-Wave Sustained Microwave Discharges." Japanese Journal of Applied Physics 36, Part 1, No. 7B (July 30, 1997): 4704–10. http://dx.doi.org/10.1143/jjap.36.4704.
Full textRicard, A., C. Barbeau, A. Besner, J. Hubert, J. Margot-Chaker, M. Moisan, and G. Sauvé. "Production of metastable and resonant atoms in rare-gas (He, Ne, Ar) radio-frequency and microwave-sustained discharges." Canadian Journal of Physics 66, no. 8 (August 1, 1988): 740–48. http://dx.doi.org/10.1139/p88-122.
Full textGirka, V. O. "Electron Heating During Microwave Gas Discharge Sustained by Surface Cyclotron Waves." Physica Scripta 60, no. 3 (September 1, 1999): 257–60. http://dx.doi.org/10.1238/physica.regular.060a00257.
Full textNagatsu, M., G. Xu, I. Ghanashev, M. Kanoh, and H. Sugai. "Mode identification of surface waves excited in a planar microwave discharge." Plasma Sources Science and Technology 6, no. 3 (August 1, 1997): 427–34. http://dx.doi.org/10.1088/0963-0252/6/3/020.
Full textZhukov, V. I., D. M. Karfidov, and K. F. Sergeichev. "Propagation of Microwave Discharge Sustained by Surface Wave in Quartz Tube Filled with Low-Pressure Air." Plasma Physics Reports 46, no. 8 (August 2020): 837–45. http://dx.doi.org/10.1134/s1063780x20080127.
Full textKutasi, Kinga, Vasco Guerra, and Paulo A. Sá. "Active species downstream of an Ar–O2surface-wave microwave discharge for biomedicine, surface treatment and nanostructuring." Plasma Sources Science and Technology 20, no. 3 (April 14, 2011): 035006. http://dx.doi.org/10.1088/0963-0252/20/3/035006.
Full textIvanova, K., I. Koleva, A. Shivarova, and E. Tatarova. "Radiophysics plasma diagnostic methods applied to surface wave sustained microwave discharges." Physica Scripta 47, no. 2 (February 1, 1993): 224–29. http://dx.doi.org/10.1088/0031-8949/47/2/017.
Full textMakasheva, K., and A. Shivarova. "Plasma parameters of diffusion-controlled microwave discharges in surface-wave fields." IEEE Transactions on Plasma Science 30, no. 1 (February 2002): 384–90. http://dx.doi.org/10.1109/tps.2002.1003885.
Full textMoreno, Sergio H., Andrzej I. Stankiewicz, and Georgios D. Stefanidis. "A two-step modelling approach for plasma reactors – experimental validation for CO2 dissociation in surface wave microwave plasma." Reaction Chemistry & Engineering 4, no. 7 (2019): 1253–69. http://dx.doi.org/10.1039/c9re00022d.
Full textBoudreau, Denis, Chantal Laverdure, and Joseph Hubert. "Nitrogen Determination in Argon by Surface-Wave-Induced Plasma Atomic Emission Spectrometry." Applied Spectroscopy 43, no. 3 (March 1989): 456–60. http://dx.doi.org/10.1366/0003702894202904.
Full textRousseau, A., E. Teboul, and S. Béchu. "Comparison between Langmuir probe and microwave autointerferometry measurements at intermediate pressure in an argon surface wave discharge." Journal of Applied Physics 98, no. 8 (October 15, 2005): 083306. http://dx.doi.org/10.1063/1.2112172.
Full textNakagawa, Takashi, Jaeho Kim, Takayuki Toba, and Makoto Katsurai. "Three Dimensional Numerical Analysis on Discharge Properties of Microwave Excited Ring-Dielectric-Line Surface Wave Processing Plasma Device." IEEJ Transactions on Fundamentals and Materials 123, no. 5 (2003): 481–89. http://dx.doi.org/10.1541/ieejfms.123.481.
Full textKutasi, Kinga, Dean Popović, Nikša Krstulović, and Slobodan Milošević. "Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a kHz plasma jet." Plasma Sources Science and Technology 28, no. 9 (September 6, 2019): 095010. http://dx.doi.org/10.1088/1361-6595/ab3c2f.
Full textKutasi, Kinga, Cédric Noël, Thierry Belmonte, and Vasco Guerra. "Tuning the afterglow plasma composition in Ar/N2/O2mixtures: characteristics of a flowing surface-wave microwave discharge system." Plasma Sources Science and Technology 25, no. 5 (August 25, 2016): 055014. http://dx.doi.org/10.1088/0963-0252/25/5/055014.
Full textNakagawa, Takashi, Jaeho Kim, Takayuki Toba, and Makoto Katsurai. "Three-dimensional numerical analysis on discharge properties of microwave excited ring dielectric line surface wave processing plasma device." Electrical Engineering in Japan 150, no. 4 (2005): 1–12. http://dx.doi.org/10.1002/eej.10333.
Full textZlobina, I. V., and A. A. Korotich. "IMPACT OF HIGH VOLTAGE ELECTRIC DISCHARGES ON THE CURED POLYMER COMPOSITE MATERIALS, MODIFIED IN A MICROWAVE ELECTROMAGNETIC FIELD." Spravochnik. Inzhenernyi zhurnal, no. 284 (November 2020): 6–12. http://dx.doi.org/10.14489/hb.2020.11.pp.006-012.
Full textZlobina, I. V., and A. A. Korotich. "IMPACT OF HIGH VOLTAGE ELECTRIC DISCHARGES ON THE CURED POLYMER COMPOSITE MATERIALS, MODIFIED IN A MICROWAVE ELECTROMAGNETIC FIELD." Spravochnik. Inzhenernyi zhurnal, no. 284 (November 2020): 6–12. http://dx.doi.org/10.14489/hb.2020.11.pp.006-012.
Full textKortshagen, U., A. Shivarova, E. Tatarova, and D. Zamfirov. "Electron energy distribution function in a microwave discharge created by propagating surface waves." Journal of Physics D: Applied Physics 27, no. 2 (February 14, 1994): 301–11. http://dx.doi.org/10.1088/0022-3727/27/2/019.
Full textZhang, Wencong, Li Wu, Junwu Tao, and Kama Huang. "Numerical Investigation of the Gas Flow Effects on Surface Wave Propagation and Discharge Properties in a Microwave Plasma Torch." IEEE Transactions on Plasma Science 47, no. 1 (January 2019): 271–77. http://dx.doi.org/10.1109/tps.2018.2882637.
Full textChen, Guoxing, Thomas Godfroid, Nikolay Britun, Violeta Georgieva, Marie-Paule Delplancke-Ogletree, and Rony Snyders. "Plasma-catalytic conversion of CO 2 and CO 2 /H 2 O in a surface-wave sustained microwave discharge." Applied Catalysis B: Environmental 214 (October 2017): 114–25. http://dx.doi.org/10.1016/j.apcatb.2017.05.032.
Full textGarcía, M. C., C. Yubero, M. D. Calzada, and M. P. Martínez-Jiménez. "Spectroscopic Characterization of Two Different Microwave (2.45 GHz) Induced Argon Plasmas at Atmospheric Pressure." Applied Spectroscopy 59, no. 4 (April 2005): 519–28. http://dx.doi.org/10.1366/0003702053641405.
Full textArtem'ev, K. V., N. K. Berezhetskaya, S. Yu Kazantsev, N. G. Kononov, I. A. Kossyi, N. A. Popov, N. M. Tarasova, E. A. Filimonova, and K. N. Firsov. "Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2048 (August 13, 2015): 20140334. http://dx.doi.org/10.1098/rsta.2014.0334.
Full textKutasi, Kinga, and Ihor Korolov. "Characteristics of the flowing afterglow of a surface-wave microwave discharge in a reactor loaded with a small diameter tube." Plasma Processes and Polymers 14, no. 10 (April 6, 2017): 1700028. http://dx.doi.org/10.1002/ppap.201700028.
Full textDaviaud, S., C. Boisse-Laporte, P. Leprince, and J. Marec. "Description of a surface-wave-produced microwave discharge in helium at low pressure in the presence of a gas flow." Journal of Physics D: Applied Physics 22, no. 6 (June 14, 1989): 770–79. http://dx.doi.org/10.1088/0022-3727/22/6/009.
Full textChaker, M., M. Moisan, and Z. Zakrzewski. "Microwave and RF surface wave sustained discharges as plasma sources for plasma chemistry and plasma processing." Plasma Chemistry and Plasma Processing 6, no. 1 (March 1986): 79–96. http://dx.doi.org/10.1007/bf00573823.
Full textKemaneci, Efe, Felix Mitschker, Jan Benedikt, Denis Eremin, Peter Awakowicz, and Ralf Peter Brinkmann. "A numerical analysis of a microwave induced coaxial surface wave discharge fed with a mixture of oxygen and hexamethyldisiloxane for the purpose of deposition." Plasma Sources Science and Technology 28, no. 11 (November 19, 2019): 115003. http://dx.doi.org/10.1088/1361-6595/ab3f8a.
Full textGranier, A., D. Chéreau, K. Henda, R. Safari, and P. Leprince. "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2‐N2mixtures." Journal of Applied Physics 75, no. 1 (January 1994): 104–14. http://dx.doi.org/10.1063/1.355897.
Full textGuerra, Vasco, Kinga Kutasi, and Paulo A. Sá. "O2(a Δ1g) production in flowing Ar–O2 surface-wave microwave discharges: Possible use for oxygen-iodine laser excitation." Applied Physics Letters 96, no. 7 (February 15, 2010): 071503. http://dx.doi.org/10.1063/1.3318253.
Full textSzőke, Csaba, Zoltán Nagy, Krisztián Gierczik, András Székely, Tamás Spitkól, Zsuzsanna T. Zsuboril, Gábor Galiba, Csaba L. Marton, and Kinga Kutasi. "Effect of the afterglows of low pressure Ar/N2 -O2 surface-wave microwave discharges on barley and maize seeds." Plasma Processes and Polymers 15, no. 2 (November 27, 2017): 1700138. http://dx.doi.org/10.1002/ppap.201700138.
Full textTatarova, E., and D. Zamfirov. "A radially resolved experimental investigation of the electron energy distribution function in a microwave discharge sustained by propagating surface waves." Journal of Physics D: Applied Physics 28, no. 7 (July 14, 1995): 1354–61. http://dx.doi.org/10.1088/0022-3727/28/7/012.
Full textOlexandr A. Shchyptsov, Dmitry L. Kreta, Oleksiy G. Lebid, and Natalia A. Sheviakina. "Use of remote sensing results in the tasks of navigational and hydrographic situation monitoring." Environmental safety and natural resources 36, no. 4 (December 22, 2020): 66–76. http://dx.doi.org/10.32347/2411-4049.2020.4.66-76.
Full textMoisan, Michel, and Helena Nowakowska. "Contribution of surface-wave (SW) sustained plasma columns to the modeling of RF and microwave discharges with new insight into some of their features. A survey of other types of SW discharges." Plasma Sources Science and Technology 27, no. 7 (July 18, 2018): 073001. http://dx.doi.org/10.1088/1361-6595/aac528.
Full textAleksandrov, K. V., L. P. Grachev, I. I. Esakov, and K. V. Khodataev. "Surface streamer microwave discharge." Technical Physics 47, no. 7 (July 2002): 851–55. http://dx.doi.org/10.1134/1.1495046.
Full textKirov, K., K. Makasheva, and A. Shivarova. "Diagnostics of microwave discharges sustained by propagating surface waves." Vacuum 58, no. 2-3 (August 2000): 280–86. http://dx.doi.org/10.1016/s0042-207x(00)00179-2.
Full textBoisse-Laporte, C., A. Granier, E. Dervisevic, P. Leprince, and J. Marec. "Microwave discharges produced by surface waves in argon gas." Journal of Physics D: Applied Physics 20, no. 2 (February 14, 1987): 197–203. http://dx.doi.org/10.1088/0022-3727/20/2/008.
Full textKutasi, Kinga, Paulo A. Sá, and Vasco Guerra. "O2dissociation in Ar–O2surface-wave microwave discharges." Journal of Physics D: Applied Physics 45, no. 19 (April 25, 2012): 195205. http://dx.doi.org/10.1088/0022-3727/45/19/195205.
Full textKutasi, Kinga, Vasco Guerra, and Paulo Sá. "Theoretical insight into Ar–O2surface-wave microwave discharges." Journal of Physics D: Applied Physics 43, no. 17 (April 15, 2010): 175201. http://dx.doi.org/10.1088/0022-3727/43/17/175201.
Full textEsakov, Igor I., Lev P. Grachev, Kirill V. Khodataev, Vladimir L. Bychkov, and David M. Van Wie. "Surface Discharge in a Microwave Beam." IEEE Transactions on Plasma Science 35, no. 6 (December 2007): 1658–63. http://dx.doi.org/10.1109/tps.2007.901881.
Full textShibkov, V. M. "Mechanisms of Microwave Surface Discharge Propagation." Technical Physics 50, no. 4 (2005): 462. http://dx.doi.org/10.1134/1.1901785.
Full textShibkov, V. M. "Microwave Discharges and Their Application. I. Surface Microwave Discharge." Moscow University Physics Bulletin 74, no. 5 (September 2019): 421–37. http://dx.doi.org/10.3103/s002713491905014x.
Full text