Journal articles on the topic 'Surface ordering'

To see the other types of publications on this topic, follow the link: Surface ordering.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Surface ordering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Xin, Joseph A. Gardella, and Philip L. Kumler. "Surface ordering of block copolymers." Macromolecules 25, no. 24 (November 1992): 6631–37. http://dx.doi.org/10.1021/ma00050a036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Froyen, Sverre, and Alex Zunger. "Surface-induced ordering in GaInP." Physical Review Letters 66, no. 16 (April 22, 1991): 2132–35. http://dx.doi.org/10.1103/physrevlett.66.2132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gustavsson, Andreas. "A reparametrization invariant surface ordering." Journal of High Energy Physics 2005, no. 11 (November 22, 2005): 035. http://dx.doi.org/10.1088/1126-6708/2005/11/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Léonard, Fraņcois, and Rashmi C. Desai. "Chemical ordering during surface growth." Physical Review B 55, no. 15 (April 15, 1997): 9990–98. http://dx.doi.org/10.1103/physrevb.55.9990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McRae, EC, and RA Malic. "Applications of Low-energy Electron Diffraction to Ordering at Crystal and Quasicrystal Surfaces." Australian Journal of Physics 43, no. 5 (1990): 499. http://dx.doi.org/10.1071/ph900499.

Full text
Abstract:
The value of the low-energy electron diffraction (LEED) technique for the evaluation of surface ordering depends on the ability to measure the intensity profiles of diffraction beams with respect to the associated surface component of the electron momentum transfer. Beam profiles, if measured with sufficient accuracy, may be interpreted to characterise the extent of surface order (e.g. distribution of step spacings) and to differentiate between different modes of disordering (e.g. surface melting versus roughening). The ability to measure LEED intensity profiles has been enhanced by use of low-current well-defined primary electron beams in conjunction with position-sensitive detection (PSD) of the diffracted electrons. The following are examples of applications ofLEED-PSD. Compositional Ordering at Ordering Alloy CU3Au (100) and (110) Surfaces: The ordering of the (100) surface is .believed to conform to a conventional picture in which the already-ordered bulk acts as a template, but the profiles measured in the course of ordering of the (110) surface are of the shapes expected if the ordering occurred first at the surface. Disordering of Ce(111) Surface 150 K below the Bulk Melting Temperature: The intensities and profiles are inconsistent with surface .melting or roughening, but a model based on molecular dynamics simulations is not ruled out. Order and Disordering at Decagonal Quasicrystal AI65 CUI 5 C02 0 Surfaces: At room temperature the quasi crystalline order is well developed at both the 'ten-fold' surface (perpendicular to the ten-fold surface (perpendicular to the ten-fold periodic axis) and a 'two-fold' one (parallel to the ten-fold axis) as evidenced by narrow beam profiles. The ten-fold surface undergoes a disordering transition at 700 K, but the temperature dependence of the profiles is unlike that expected for the roughening transition anticipated theoretically.
APA, Harvard, Vancouver, ISO, and other styles
6

Seo, Dae-Shik. "Relationship between surface anchoring strength and surface ordering on weakly rubbed polyimide surfaces." Liquid Crystals 27, no. 11 (November 2000): 1539–42. http://dx.doi.org/10.1080/026782900750018717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Froyen, S., J. E. Bernard, R. Osório, and A. Zunger. "Surface energetics and ordering in GaInP." Physica Scripta T45 (January 1, 1992): 272–76. http://dx.doi.org/10.1088/0031-8949/1992/t45/059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McRae, E. G., and R. A. Malic. "Ordering kinetics at theCu3Au(110) surface." Physical Review Letters 65, no. 6 (August 6, 1990): 737–40. http://dx.doi.org/10.1103/physrevlett.65.737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bowers, James, Marcos C. Vergara-Gutierrez, and John R. P. Webster. "Surface Ordering of Amphiphilic Ionic Liquids." Langmuir 20, no. 2 (January 2004): 309–12. http://dx.doi.org/10.1021/la035495v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bellier-Castella, L., D. Caprion, and J. P. Ryckaert. "Surface ordering of diskotic liquid crystals." Journal of Chemical Physics 121, no. 10 (September 8, 2004): 4874–83. http://dx.doi.org/10.1063/1.1778379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lewis, D., J. M. C. Thornton, J. R. Power, and P. Weightman. "Ordering at the surface of (110)." Journal of Physics D: Applied Physics 30, no. 20 (October 21, 1997): 2783–87. http://dx.doi.org/10.1088/0022-3727/30/20/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Puri, Sanjay, and Kurt Binder. "Surface effects on kinetics of ordering." Zeitschrift f�r Physik B Condensed Matter 86, no. 2 (June 1992): 263–71. http://dx.doi.org/10.1007/bf01313835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

WANG, J., A. J. DAVENPORT, H. S. ISAACS, and B. M. OCKO. "Surface Charge--Induced Ordering of the Au(111) Surface." Science 255, no. 5050 (March 13, 1992): 1416–18. http://dx.doi.org/10.1126/science.255.5050.1416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mele, E. J. "Surface phonons and dimer ordering transitions on Si(001) surfaces." Surface Science Letters 278, no. 1-2 (November 1992): L135—L140. http://dx.doi.org/10.1016/0167-2584(92)90281-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mele, E. J. "Surface phonons and dimer ordering transitions on Si(001) surfaces." Surface Science 278, no. 1-2 (November 1992): L135—L140. http://dx.doi.org/10.1016/0039-6028(92)90575-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

CRAWFORD, G. P., and J. W. DOANE. "ORDERING AND ORDERING TRANSITIONS IN CONFINED LIQUID CRYSTALS." Modern Physics Letters B 07, no. 28 (December 10, 1993): 1785–808. http://dx.doi.org/10.1142/s0217984993001818.

Full text
Abstract:
A resurgence of interest in confined liquid crystals has taken place over the past few years because of the availability of well-defined and random-type matrices that can be used to constrain liquid crystalline materials to submicrometer spaces. The main driving force behind many of the studies on confined liquid crystals is their relevance to electrically controllable light-scattering devices. Apart from their electrooptic importance, confined liquid crystals introduce many fascinating surface and finite-size effects which are the subject of this review.
APA, Harvard, Vancouver, ISO, and other styles
17

Kerscher, Michael, Frederik Lipfert, and Henrich Frielinghaus. "Exploring Hidden Local Ordering in Microemulsions with a Weak Directive Second Order Parameter." Chemistry Africa 3, no. 3 (February 27, 2020): 703–9. http://dx.doi.org/10.1007/s42250-020-00126-7.

Full text
Abstract:
Abstract So far, the near-surface ordering of microemulsions was focused on lamellar ordering while the bulk microemulsion was bicontinuous. In a series of different non-ionic surfactants the near-surface ordering of microemulsions at a hydrophilic silicon surface was studied using grazing incidence small angle neutron scattering. For the surfactant C8E3, most likely a gyroid structure was found at the solid–liquid interface, while the more efficient surfactants find lamellar ordering up to lamellar capillary condensation. The ranges for near-surface ordering are deeper than the bulk correlation lengths. These findings point towards theories that use directional order parameters that would lead to deeper near-surface ordering than simple theories with a single scalar order parameter would predict. Rheology experiments display high viscosities at very low shear rates and, therefore, support the existence of a directional order parameter.
APA, Harvard, Vancouver, ISO, and other styles
18

Karamov, D. D., D. A. Kiselev, M. D. Malinkovich, V. M. Kornilov, A. N. Lachinov, and R. M. Gadiev. "SURFACE DIPOLE ORDERING OF SUBMICRON POLYDIPHENYLENEPHTHALIDE FILMS." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 18, no. 4 (January 1, 2015): 233–39. http://dx.doi.org/10.17073/1609-3577-2015-4-233-239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Žumer, S., P. Ziherl, and G. P. Crawford. "Ordering and Dynamics in Paranematic Surface Layers." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 290, no. 1 (November 1996): 193–202. http://dx.doi.org/10.1080/10587259608031905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Karamov, D. D., D. A. Kiselev, M. D. Malinkovich, V. M. Kornilov, A. N. Lachinov, and R. M. Gadiev. "Surface dipole ordering in submicron polydiphenylenephthalide films." Russian Microelectronics 45, no. 8-9 (December 2016): 619–24. http://dx.doi.org/10.1134/s1063739716080059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Factor, B. J., T. P. Russell, and M. F. Toney. "Surface-induced ordering of an aromatic polyimide." Physical Review Letters 66, no. 9 (March 4, 1991): 1181–84. http://dx.doi.org/10.1103/physrevlett.66.1181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wagstaffe, Michael, Mark J. Jackman, Karen L. Syres, Alexander Generalov, and Andrew G. Thomas. "Ionic Liquid Ordering at an Oxide Surface." ChemPhysChem 17, no. 21 (September 8, 2016): 3430–34. http://dx.doi.org/10.1002/cphc.201600774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yoshimi, Kazuyoshi, Takeo Kato, and Hideaki Maebashi. "Fermi Surface Deformation Near Charge-Ordering Transition." Journal of the Physical Society of Japan 80, no. 12 (December 15, 2011): 123707. http://dx.doi.org/10.1143/jpsj.80.123707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Y., W. Zhao, X. Zheng, A. King, A. Singh, M. H. Rafailovich, J. Sokolov, K. H. Dai, and E. J. Kramer. "Surface-Induced Ordering in Asymmetric Block Copolymers." Macromolecules 27, no. 14 (July 1994): 4000–4010. http://dx.doi.org/10.1021/ma00092a047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Weinstein, A., and S. A. Safran. "Surface and bulk ordering in thin films." Europhysics Letters (EPL) 42, no. 1 (April 1, 1998): 61–66. http://dx.doi.org/10.1209/epl/i1998-00552-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fredrickson, Glenn H. "Surface ordering phenomena in block copolymer melts." Macromolecules 20, no. 10 (October 1987): 2535–42. http://dx.doi.org/10.1021/ma00176a037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Garanin, D. A. "Ordering in magnetic films with surface anisotropy." Journal of Physics A: Mathematical and General 32, no. 24 (January 1, 1999): 4323–42. http://dx.doi.org/10.1088/0305-4470/32/24/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Raffaini, Giuseppina, and Fabio Ganazzoli. "Surface Ordering of Proteins Adsorbed on Graphite." Journal of Physical Chemistry B 108, no. 36 (September 2004): 13850–54. http://dx.doi.org/10.1021/jp0477452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vasiliev, M. A. "Surface effects of ordering in binary alloys." Journal of Physics D: Applied Physics 30, no. 22 (November 21, 1997): 3037–70. http://dx.doi.org/10.1088/0022-3727/30/22/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hsu, T. C., G. B. Stringfellow, J. H. Kim, and T. Y. Seong. "Surface photoabsorption transients and ordering in GaInP." Journal of Applied Physics 83, no. 6 (March 15, 1998): 3350–55. http://dx.doi.org/10.1063/1.367122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Brown, Gregory, and Amitabha Chakrabarti. "Surface‐induced ordering in block copolymer melts." Journal of Chemical Physics 101, no. 4 (August 15, 1994): 3310–17. http://dx.doi.org/10.1063/1.467578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shen, Y. G., D. J. O'Connor, R. J. MacDonald, and K. Wandelt. "Surface composition and ordering of Cu3Pt(111)." Solid State Communications 96, no. 8 (November 1995): 557–62. http://dx.doi.org/10.1016/0038-1098(95)00500-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kingetsu, T., M. Yamamoto, and S. Nenno. "ORDERING AND DISORDERING PHENOMENA AT/NEAR THE SURFACE OF D1a TYPE ORDERING ALLOYS." Le Journal de Physique Colloques 48, no. C6 (November 1987): C6–373—C6–378. http://dx.doi.org/10.1051/jphyscol:1987661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nieto, F., and C. Uebing. "Surface diffusion on heterogeneous surfaces: Competition between ordering and heterogeneity effects." Vacuum 54, no. 1-4 (July 1999): 119–24. http://dx.doi.org/10.1016/s0042-207x(98)00446-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

VANDERBILT, DAVID. "ORDERING AT SURFACES FROM ELASTIC AND ELECTROSTATIC INTERACTIONS." Surface Review and Letters 04, no. 05 (October 1997): 811–16. http://dx.doi.org/10.1142/s0218625x9700081x.

Full text
Abstract:
Elastic and electrostatic interactions can sometimes have a profound influence on surface morphology. Here, we review the conditions under which surface stress or surface dipole variations can give rise to spontaneous domain formation at surfaces, and focus especially on the case of the Si(100) surface. In principle, the anisotropy of the surface stress should cause the spontaneous formation of a striped domain structure on Si(100). In practice, the length scale for this domain structure turns out to be so large as to prevent its direct observation, although the influence of the elastic interactions has been observed indirectly in a variety of related experiments. It is now evident that by introducing Ge or B atoms, the conditions can be tuned in such a way that the spontaneous domain formation is strikingly observed. Because surface electrostatic dipolar interactions scale in the same way as elastic ones, it follows that similar effects can arise from these sources. We consider a simple model two-phase surface system with 1/r3 dipolar interactions, and find that the model exhibits spontaneous formation of two kinds of periodic domain structure. A striped domain structure is stable near half-filling, but as the area fraction is changed, a transition to a hexagonal lattice of almost-circular droplets occurs. The relation of this model to experimental surface systems, especially that of Langmuir layers at the water–air interface, will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
36

Camley, R. E., M. G. Cottam, and D. R. Tilley. "Surface polaritons in antiferromagnetic superlattices with ordering perpendicular to the surface." Solid State Communications 81, no. 7 (February 1992): 571–74. http://dx.doi.org/10.1016/0038-1098(92)90414-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pedraza, A. J., J. D. Fowlkes, D. A. Blom, and H. M. Meyer. "Laser-induced nanoparticle ordering." Journal of Materials Research 17, no. 11 (November 2002): 2815–22. http://dx.doi.org/10.1557/jmr.2002.0409.

Full text
Abstract:
Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism.
APA, Harvard, Vancouver, ISO, and other styles
38

Workineh, Zerihun, and Alexandros Vanakaras. "Surface-Induced Ordering on Model Liquid Crystalline Dendrimers." Polymers 6, no. 8 (July 30, 2014): 2082–99. http://dx.doi.org/10.3390/polym6082082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pezoldt, J., Yu V. Trushin, V. S. Kharlamov, A. A. Schmidt, V. Cimalla, and O. Ambacher. "Carbon surface diffusion and SiC nanocluster self-ordering." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 253, no. 1-2 (December 2006): 241–45. http://dx.doi.org/10.1016/j.nimb.2006.10.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Murata, H. "Correlation between surface structure and ordering in GaInP." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 4 (July 1996): 3013. http://dx.doi.org/10.1116/1.589057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nygård, Kim, Dillip K. Satapathy, Edith Perret, Celestino Padeste, Oliver Bunk, Christian David, and J. Friso van der Veen. "Surface-specific ordering of reverse micelles in confinement." Soft Matter 6, no. 18 (2010): 4536. http://dx.doi.org/10.1039/c0sm00296h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Śliwa, I., W. Jeżewski, and A. V. Zakharov. "Local structural ordering in surface-confined liquid crystals." Journal of Chemical Physics 146, no. 24 (June 28, 2017): 244704. http://dx.doi.org/10.1063/1.4989543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Carpinelli, J. M., H. H. Weitering, M. Bartkowiak, R. Stumpf, and E. W. Plummer. "Surface Charge Ordering Transition:αPhase of Sn/Ge(111)." Physical Review Letters 79, no. 15 (October 13, 1997): 2859–62. http://dx.doi.org/10.1103/physrevlett.79.2859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ge, Shouren, Lantao Guo, Miriam H. Rafailovich, Jonathan Sokolov, Dennis G. Peiffer, Steven A. Schwarz, Ralph H. Colby, and William D. Dozier. "Surface-Induced Ordering in Graft Copolymer Thin Films." Langmuir 15, no. 8 (April 1999): 2911–15. http://dx.doi.org/10.1021/la980556o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sovago, Maria, George W. H. Wurpel, Marc Smits, Michiel Müller, and Mischa Bonn. "Calcium-Induced Phospholipid Ordering Depends on Surface Pressure." Journal of the American Chemical Society 129, no. 36 (September 2007): 11079–84. http://dx.doi.org/10.1021/ja071189i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tan, X., G. Ouyang, and G. W. Yang. "Ordering Fe nanowire on stepped Cu (111) surface." Applied Physics Letters 88, no. 26 (June 26, 2006): 263116. http://dx.doi.org/10.1063/1.2218326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pasarín, I. S., M. Yang, N. Bovet, M. Glyvradal, M. M. Nielsen, J. Bohr, R. Feidenhans’l, and S. L. S. Stipp. "Molecular Ordering of Ethanol at the Calcite Surface." Langmuir 28, no. 5 (January 19, 2012): 2545–50. http://dx.doi.org/10.1021/la2021758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Friedman, D. J., Jane G. Zhu, A. E. Kibbler, J. M. Olson, and J. Moreland. "Surface topography and ordering‐variant segregation in GaInP2." Applied Physics Letters 63, no. 13 (September 27, 1993): 1774–76. http://dx.doi.org/10.1063/1.110658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Luo, J. S. "Annealing-induced near-surface ordering in disordered Ga0.5In0.5P." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 4 (July 1995): 1755. http://dx.doi.org/10.1116/1.587808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Resch-Esser, U. "Surface ordering on GaAs(100) by indium-termination." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 4 (July 1995): 1672. http://dx.doi.org/10.1116/1.587876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography