Academic literature on the topic 'Surface melting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface melting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surface melting"

1

Jezequel, G., P. Thiry, G. Rossi, K. Hricovini, and Y. Petroff. "Surface melting?" Surface Science 189-190 (October 1987): 605–9. http://dx.doi.org/10.1016/s0039-6028(87)80487-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dash, J. G. "Surface melting." Contemporary Physics 30, no. 2 (March 1989): 89–100. http://dx.doi.org/10.1080/00107518908225509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jezequel, G., P. Thiry, G. Rossi, K. Hricovini, and Y. Petroff. "Surface melting?" Surface Science Letters 189-190 (October 1987): A427. http://dx.doi.org/10.1016/0167-2584(87)90498-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Levi, Andrea C., and Erio Tosatti. "Surface melting or non-melting." Surface Science 189-190 (October 1987): 641–44. http://dx.doi.org/10.1016/s0039-6028(87)80492-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Levi, Andrea C., and Erio Tosatti. "Surface melting or non-melting." Surface Science Letters 189-190 (October 1987): A430. http://dx.doi.org/10.1016/0167-2584(87)90503-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wojtczak, Leszek, and Jerzy H. Rutkowski. "Surface melting description." Progress in Surface Science 59, no. 1-4 (September 1998): 79–89. http://dx.doi.org/10.1016/s0079-6816(98)00037-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramous, Emilio. "Rapid surface melting." Materials Science and Engineering: A 178, no. 1-2 (April 1994): 185–88. http://dx.doi.org/10.1016/0921-5093(94)90540-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pavlovska, A., D. Dobrev, and E. Bauer. "Surface melting versus surface non-melting: an equilibrium shape study." Surface Science Letters 286, no. 1-2 (April 1993): A341. http://dx.doi.org/10.1016/0167-2584(93)90627-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pavlovska, A., D. Dobrev, and E. Bauer. "Surface melting versus surface non-melting: an equilibrium shape study." Surface Science 286, no. 1-2 (April 1993): 176–81. http://dx.doi.org/10.1016/0039-6028(93)90567-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Natori, A., and H. Harada. "Surface melting of vicinal Si(111) surfaces." Surface Science 438, no. 1-3 (September 1999): 162–72. http://dx.doi.org/10.1016/s0039-6028(99)00566-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Surface melting"

1

Trittibach, Roman. "Surface melting of gallium single crystals /." [S.l.] : [s.n.], 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lamb, M. "Laser surface melting of stainless steel." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zou, Xun zou. "Investigation of Surface Melting in West Antarctica." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1591151747043358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Folkes, Janet Ann. "Laser surface melting and alloying of titanium alloys." Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/38315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Zhen-da. "Laser surface melting and alloying of cast irons." Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/38260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bocchetti, Virgile. "Melting, Surface Relaxation and Thermal Stability of Crystalline Solids." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00949404.

Full text
Abstract:
In this thesis we study thermal properties and melting behavior of crystals using Monte Carlo simulations. The Monte Carlo method is very difficult to implementfor melting investigation, unlike for problems where particles (such as spins) are localized on lattice sites. However, once it is well conceived, it is among themost efficient numerical techniques, to be able to study melting.We have created a high-performance algorithm based on an optimized Verlet procedure, which allowed us to investigate thermalproperties up to the melting. This optimization was necessary for treating an important number of atoms in very long runsto have good statistics, without prohibitive CPU time.We applied our algorithm to rare-gas crystals using the Lennard-Jones potential with parameters given by Bernardes which are widely used in the literature since 1958.Our results, thanks to their precision, show that we should modify these parameters in order to have a good agreement with experimental data.We studied melting of bulk semiconductors and metals by considering the case of Si and Ag. These materials have been chosen to serve our project about Silicene. Silicon has a diamond structure, and silver has the FCC lattice structure, both of them have been well experimentallystudied with well-known experimental melting temperatures. In spite of this, no good simulations have been done. For Si, one of the major problems is thechoice of a potential which stabilizes the diamond structure at finite temperatures. We have applied our algorithm to these materials using the multi-body Stillinger-Weber and Tersoff potentials for Si and the Gupta and EAM(embedded atom method) potentials for Ag. We obtained results much more precise than in early simulations and in good agreement with experiments.We also studied the Ag(111) surface trying to elucidate the long-standing controversy whether or not there is the ''anomalous'' thermal expansion whichhappens, for certain metals, when the inter-layer distances between the topmost atomic planes changes from a contracted situation to an expansion with respect tothe bulk distance. We showed that, depending on the potential, the anomalous crossover exists and the surface melting can occur at a temperature very far belowthat of the bulk melting. This is the case of EAM potential, but not the Gupta potential where surface melting occurs just belowbulk the melting.Finally, we studied the thermal stability of a stand-alone silicene sheet. Silicene is the Si counterpart of 2D carbon sheet called ''graphene". Siliceneattracts the attention of many researchers, because of its electronic and thermal properties which seem to be comparable to those of graphene which is actually oneof the most studied materials, due to its unusual properties susceptible for revolutionary device applications. Furthermore, because it is a Si-based material, thecompatibility, with the actual Si-based electronic industry, is expected to be better than for graphene. We show that, using the Tersoff potential with twosets of parameters (the original and the modified ones), the silicene 2D honeycomb structure is stable up to high temperatures without buckling. We have tested the Stillinger-Weberpotential: it yields a buckled honeycomb sheet at low temperatures but the 2D structure is destroyed in favor of a tri-dimensional structureat the melting. Discussion on this point is given.A general conclusion with some open perspectives is given at the end.
APA, Harvard, Vancouver, ISO, and other styles
7

Klingvall, Ek Rebecca. "SURFACE PROPERTIES OF IMPLANTS MANUFACTURED USING ELECTRON BEAM MELTING." Licentiate thesis, Mittuniversitetet, Avdelningen för kvalitetsteknik, maskinteknik och matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-27125.

Full text
Abstract:
This thesis summarizes the results concerning the manufacture of medical implants for bone replacement using electron beam melting (EBM) which is an additive manufacturing (AM) technology, and aims to satisfy the engineering needs for the medical functionality of manufacturing technology. This thesis has focused on some microscopic properties for surfaces and bone integration. The process parameters of EBM manufacturing were studied to ascertain whether they have impacts on surface appearance, as surface properties have impacts on bone integration and implant performance. EBM manufacturing uses an electron beam to melt metal powder onto each layer in a manner akin to welding. The electron beam is controlled by process parameters that may be altered to a certain extent by the operator. There are individual process parameters for every material, and new parameters are set when developing new materials. In this thesis, process parameters in default settings were altered to ascertain whether it was possible to specify process parameters for implant manufacturing. The blood chamber model was used for thromboinflammation validation, using human whole blood. The model is used to identify early reactions of coagulation and immunoreactions. The material used in this study was Ti6Al4V-ELI, which is corrosion resistant and has the same surface oxide layers as titanium, and CoCr-F75, which has high stiffness, is wear-resistant and is commonly used in articulating joints. The study shows that among the process parameters researched, a combination of speed and current have the most impact on surface roughness and an interaction of parameters were found using design of experiment (DOE). As-built EBM surfaces show thrombogenicity, which in previous studies has been associated with bone ingrowth. Surface structure of as-build EBM manufactured surfaces are similar to implants surfaces described by Pilliar (2005), but with superior material properties than those of implants with sintered metals beads. By altering the process parameters controlling the electron beam, surface roughness of as-build parts may be affected, and the rougher EBM manufactured surfaces tend to be more thrombogen than the finer EBM manufactured surfaces. As-build EBM manufactured surfaces in general show more thrombogenicity than conventional machined implants surfaces.
Denna avhandling behandlar tillverkning av medicinska implantat för integration i ben. I fokus är den additiva tillverkningstekniken ”elektronstrålesmältning” ( Electron Beam Melting –EBM), en av flera tekniker som populärt beskrivs med termen 3D-skrivare. Avhandlingen fokuserar på mikroskopiska ytegenskaper och dess inverkan på benintegration. Processparametrarna för EBM-tillverkning studerades för att fastställa hur de påverkar ytans utseende, efter som ytegenskaper har effekt på implantatens funktion. EBM-tillverkning använder en elektronstråle som likt svetsning smälter ihop metallpulver. Elektronstrålen styrs av processparametrar som till viss mån kan justeras av maskinoperatören. Det finns individuella processparametrar för varje material och nya parametrar utvecklas till varje ny legering. I denna avhandling har ”grundinställningarnas processparametrar” studerats för att ta reda på om det är möjligt att ställa in specifika parametrar till implantattillverkning. Med hjälp av blodkammarmetoden, som använder humant blod, har thromboinflammatoriska egenskaper undersökts. Metoden identifierar tidiga koagulations- och immunologiska reaktioner. Legeringarna som undersökts i denna studie var Ti6Al4V-ELI, som är korrosionsbeständigt med samma uppsättning oxider på ytan som titan har, och CoCr-F75, en legering som har hög styvhet, är slitstarkt och är vanligt förekommande i implantat för leder. Bland de undersökta processparametrarna visar en kombination av hastighet och ström ha mest inverkan på ytjämnhet och en interaktion mellan parametrar identifierades med hjälp av försöksplanering. EBM-tillverkade ytor visade på thrombogena egenskaper som i tidigare studier kan relateras till god integration i benvävnad. Ytstrukturen hos EBM-tillverkade ytor liknar de implantatytor som Pilliar (2005) beskriver, men materialegenskaperna är bättre än de materialegenskaper som implantat, med sintrad yta, har. Genom att ändra processparametrarna som styr elektronstrålen kan ytstrukturen påverkas. Grövre EBM-tillverkade ytor tenderar att vara mer thrombogena än de finare EBM-tillverkade ytorna är. Obehandlade EBM-tillverkade ytor i allmänhet är mer thrombogena än vad konventionellt framställda implantatytor är.
APA, Harvard, Vancouver, ISO, and other styles
8

Maeda, Nobuo, and nobuo@engineering ucsb edu. "Phase Transitions of Long-Chain N-Alkanes at Interfaces." The Australian National University. Research School of Physical Sciences and Engineering, 2001. http://thesis.anu.edu.au./public/adt-ANU20011203.151921.

Full text
Abstract:
An experimental study of phase transitions of long-chain n-alkanes induced by the effect of interfaces is described. ¶ The phase behaviour of long-chain n-alkanes (carbon number 14, 16, 17, 18) adsorbed at isolated mica surfaces and confined between two mica surfaces has been studied in the vicinity of and down to several degrees below the bulk melting points, Tm. Using the Surface Force Apparatus we have measured the thickness of alkane films adsorbed from vapour (0.97 [equal to or greater-than] p/p[subscript o] [equal to or greater-than] 0.997), studied capillary condensation transition, subsequent growth of capillary condensates between two surfaces, and phase transitions in both the adsorbed films and the condensates. By measuring the growth rate of the capillary condensates we have identified a transition in the lateral mobility of molecules in the adsorbed films on isolated mica surfaces. This transition to greater mobility occurs slightly above Tm for n-hexadecane, n-heptadecane and n-octadecane but several degrees below Tm for n-tetradecane, and is accompanied by a change in wetting behaviour and a measurable decrease in adsorbed film thickness for n-heptadecane and n-octadecane. Capillary condensates that form below Tm remain liquid, but may freeze if the degree of confinement is reduced by separation of the mica surfaces. An increase in the area of the liquid-vapour interface relative to that of the liquid-mica interface facilitates freezing in the case of the long-chain alkanes, which show surface freezing at the liquid-vapour interface. ¶ Although thermodynamic properties of the surface freezing transition have been rather well documented, the kinetics involved in formation of such ordered monolayers has so far received very little attention. We studied the surface tension of n-octadecane as a function of temperature in the vicinity of Tm, using the static Wilhelmy plate and the dynamic maximum bubble pressure methods. The two methods give different results on cooling paths, where nucleation of the surface ordered phase is involved, but agree on heating paths, where both methods measure properties of the equilibrium surface phase. On cooling paths, the surface of bubbles may supercool below the equilibrium surface freezing temperature. The onset of surface freezing is marked by a sharp drop in the surface tension. The transition is accompanied by an increased stability of the films resulting in longer bubble lifetimes at the liquid surface, which suggests that the mechanical properties of the surfaces change from liquid-like to solid-like. Our results suggest occurrence of supercooling of the monolayer itself.
APA, Harvard, Vancouver, ISO, and other styles
9

Milton, Samuel. "Study on the machinability and surface integrity of Ti6Al4V produced by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) processes." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4011/document.

Full text
Abstract:
Les technologies de fabrication additive(FA) basées sur la technique de fusion laser sur lit de poudres, telles que les procédés de fusion sélective laser (Selective Laser Melting ‘SLM’) et de fusion par faisceau d'électrons (Electron Beam Melting ‘EBM’), ne cessent de se développer afin de produire des pièces fonctionnelles principalement dans les domaines aérospatial et médical. Le procédé de fabrication additive offre de nombreux avantages, tels que la liberté de conception, la réduction des étapes de fabrication, la réduction de la matière utilisée, et la réduction de l'empreinte carbone lors de la fabrication d'un composant. Néanmoins, les pièces obtenues nécessitent une opération d’usinage de finition afin de satisfaire les tolérances dimensionnelles et l’état de surface
Additive Manufacturing (AM) techniques based on powder bed fusion like Selective Laser Melting(SLM) and Electron Beam Melting processes(EBM) are being developed to make fully functional parts mainly in aerospace and medical sectors. There are several advantages of using AM processes like design freedom, reduced process steps, minimal material usage and reduced carbon footprint while producing a component. Nevertheless, the parts are built with near net shape and then finish machined to meet the demands of surface quality and dimensional tolerance
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Ningyu. "Melting, Solidification and Sintering/Coalescence of Nanoparticles." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284476300.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Surface melting"

1

Krzyżanowski, Michał. Umocnienie powierzchniowe stopów żelaza przy wykorzystaniunagrzewania plazmowego. Kraków: Wydawnictwa AGH, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Owusu, George. The Role of surfactants in the leaching of zinc sulphide minerals at temperatures above the melting point of sulphur. Vancouver, B.C: University of British Columbia, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chu, Fuqiang. Condensed and Melting Droplet Behavior on Superhydrophobic Surfaces. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8493-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tucci, Patrick. Surface-geophysical investigations in Melton Valley, Oak Ridge Reservation, Tennessee. Nashville, Tenn: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tucci, Patrick. Surface-geophysical investigations in Melton Valley, Oak Ridge Reservation, Tennessee. Nashville, Tenn: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tucci, Patrick. Surface-geophysical investigations in Melton Valley, Oak Ridge Reservation, Tennessee. Nashville, Tenn: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tucci, Patrick. Surface-geophysical investigations in Melton Valley, Oak Ridge Reservation, Tennessee. Nashville, Tenn: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tucci, Patrick. Surface-geophysical investigations in Melton Valley, Oak Ridge Reservation, Tennessee. Nashville, Tenn: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tucci, Patrick. Surface-geophysical investigations in Melton Valley, Oak Ridge Reservation, Tennessee. Nashville, Tenn: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hao, Liang, Yan Li, Lei Yang, Chunze Yan, Philippe G. Young, and Zhaoqing Li. Triply Periodic Minimal Surface Lattices by Selective Laser Melting Additive Manufacturing. Academic Press, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Surface melting"

1

van der Veen, J. F., B. Pluis, and A. W. Denier van der Gon. "Surface Melting." In Chemistry and Physics of Solid Surfaces VII, 455–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73902-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bäuerle, Dieter. "Surface Melting." In Laser Processing and Chemistry, 152–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03253-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bäuerle, Dieter. "Surface Melting." In Laser Processing and Chemistry, 177–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17613-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bäuerle, Dieter. "Surface Melting." In Advanced Texts in Physics, 165–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04074-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Levi, Andrea C. "On Surface Melting." In NATO ASI Series, 327–38. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5970-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tosatti, E. "Theory of Surface Melting and Non-Melting." In Springer Series in Surface Sciences, 535–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73343-7_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tosatti, E. "Theory of Surface Melting and Non-Melting." In Solvay Conference on Surface Science, 169–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74218-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Williamson, S., and G. Mourou. "Genesis of Melting." In Laser Surface Treatment of Metals, 125–31. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4468-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bienfait, Michel, and Jean-Marc Gay. "Surface Melting and Diffusion." In NATO ASI Series, 307–25. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5970-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lipowsky, R. "Surface-Induced Disorder and Surface Melting." In Springer Proceedings in Physics, 158–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75553-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Surface melting"

1

Oboňa, J. Vincenc, V. Ocelík, J. Th M. De Hosson, J. Z. P. Skolski, V. S. Mitko, G. R. B. E. Römer, and A. J. Huis in `t Veld. "Surface melting of copper by ultrashort laser pulses." In CONTACT AND SURFACE 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/secm110151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Landa Castillo Alvarado, Fray, Gerardo Contreras Puente, Julian L̸awrynowicz, Leszek Wojtczak, and Jerzy H. Rutkowski. "A geometrical model of the pre-melting properties." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SARAVANAN, R. A., and S. MRIDHA. "TITANIUM ALUMINIDES - BY SURFACE MELTING." In Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gorbunov, Aleksandr V., and Nikolay V. Klassen. "Relief of laser-induced melting in the volume." In 1st Intl School on Laser Surface Microprocessing, edited by Ian W. Boyd, Vitali I. Konov, and Boris S. Luk'yanchuk. SPIE, 1990. http://dx.doi.org/10.1117/12.23719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sändig, S., and P. Wiesner. "Laser surface melting of cutting tool materials." In ICALEO® ‘93: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1993. http://dx.doi.org/10.2351/1.5058649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vilar, R., and R. Colaço. "Laser surface melting of 440C tool steel." In ICALEO® ‘91: Proceedings of the Laser Materials Processing Symposium. Laser Institute of America, 1991. http://dx.doi.org/10.2351/1.5058470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kwok, C. T., F. T. Cheng, H. C. Man, and K. I. Leong. "Laser surface melting of high-speed steels for enhancing surface properties." In ICALEO® 2005: 24th International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2005. http://dx.doi.org/10.2351/1.5060573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Backes, Gerd, Andres Gasser, Ernst-Wolfgang Kreutz, Bernhard Ollier, Norbert Pirch, Maria Rozsnoki, and Konrad Wissenbach. "Surface melting of AlSi10Mg with CO2 laser radiation." In The Hague '90, 12-16 April, edited by Hans Opower. SPIE, 1990. http://dx.doi.org/10.1117/12.20562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Wansik, and Q. Wang. "Numerical Computation of Surface Melting at Imperfect Electrical Contact between Rough Surfaces." In Electrical Contacts - 2006. 52nd IEEE Holm Conference on Electrical Contacts. IEEE, 2006. http://dx.doi.org/10.1109/holm.2006.284069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Emel'yanov, Vladimir I. "Defect-induced nanometer-scale surface melting and strong optical nonlinearity of Ga below the melting point." In XVII International Conference on Coherent and Nonlinear Optics (ICONO 2001), edited by Anatoly V. Andreev, Pavel A. Apanasevich, Vladimir I. Emel'yanov, and Alexander P. Nizovtsev. SPIE, 2002. http://dx.doi.org/10.1117/12.468976.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Surface melting"

1

Elsayed-Ali, H. E. Dynamics of surface melting. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6477833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wilson, Perry B. Gradient limitation in accelerating structures imposed by surface melting. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/813230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, X. Z., H. H. Shao, B. M. Ocko, M. Deutsch, S. K. Sinha, M. W. Kim, H. E. Jr King, and E. B. Sirota. Surface crystallization and thin film melting in normal alkanes. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10117552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wei, Xing. Sum-frequency spectroscopic studies: I. Surface melting of ice, II. Surface alignment of polymers. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/776642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wilson, P. RF Breakdown in Accelerator Structures: From Plasma Spots to Surface Melting. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/839876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, J. M. Smoothing of Military Mirrors by Novel Surface Alloying and Melting Technique. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/940310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elsayed-Ali, H. Dynamics of surface melting: Progress report, September 1, 1988--December 31, 1989. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5703345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hani E. Elsayed-Ali. Dynamics of surface melting. Final report for period 1 September, 1993 - 30 April, 1996. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/762939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griffin, John A. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1123477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dr. John J. Moore and Dr. Jianliang Lin. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1050628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography