Journal articles on the topic 'Surface-enhanced Raman spectroscopy'

To see the other types of publications on this topic, follow the link: Surface-enhanced Raman spectroscopy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Surface-enhanced Raman spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

NISHINO, Tomoaki. "Surface-enhanced Raman Spectroscopy." Analytical Sciences 34, no. 9 (September 10, 2018): 1061–62. http://dx.doi.org/10.2116/analsci.highlights1809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stiles, Paul L., Jon A. Dieringer, Nilam C. Shah, and Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy." Annual Review of Analytical Chemistry 1, no. 1 (July 2008): 601–26. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haynes, Christy L., Adam D. McFarland, and Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy." Analytical Chemistry 77, no. 17 (September 2005): 338 A—346 A. http://dx.doi.org/10.1021/ac053456d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garrell, Robin L. "Surface-enhanced Raman spectroscopy." Analytical Chemistry 61, no. 6 (March 15, 1989): 401A—411A. http://dx.doi.org/10.1021/ac00181a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sur, Ujjal Kumar. "Surface-enhanced Raman spectroscopy." Resonance 15, no. 2 (February 2010): 154–64. http://dx.doi.org/10.1007/s12045-010-0016-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popp, Jürgen, and Thomas Mayerhöfer. "Surface-enhanced Raman spectroscopy." Analytical and Bioanalytical Chemistry 394, no. 7 (June 10, 2009): 1717–18. http://dx.doi.org/10.1007/s00216-009-2864-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bell, Steven E. J., and Narayana M. S. Sirimuthu. "Quantitative surface-enhanced Raman spectroscopy." Chemical Society Reviews 37, no. 5 (2008): 1012. http://dx.doi.org/10.1039/b705965p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nie, Shuming, Leigh Ann Lipscomb, and Nai-Teng Yu. "Surface-Enhanced Hyper-Raman Spectroscopy." Applied Spectroscopy Reviews 26, no. 3 (September 1991): 203–76. http://dx.doi.org/10.1080/05704929108050881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keller, Emily L., Nathaniel C. Brandt, Alyssa A. Cassabaum, and Renee R. Frontiera. "Ultrafast surface-enhanced Raman spectroscopy." Analyst 140, no. 15 (2015): 4922–31. http://dx.doi.org/10.1039/c5an00869g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kudelski, Andrzej. "Nanomaterials for Surface Enhanced Raman Spectroscopy." Nanomaterials 13, no. 3 (January 18, 2023): 402. http://dx.doi.org/10.3390/nano13030402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shupeng Liu, Shupeng Liu, Lianxin Li Lianxin Li, Zhenyi Chen Zhenyi Chen, Na Chen Na Chen, Zhangmin Dai Zhangmin Dai, Jing Huang Jing Huang, and Bo Lu Bo Lu. "Surface-enhanced Raman spectroscopy measurement of cancerous cells with optical fiber sensor." Chinese Optics Letters 12, s1 (2014): S13001–313003. http://dx.doi.org/10.3788/col201412.s13001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Qiu, Yuxuan, Cuifang Kuang, Xu Liu, and Longhua Tang. "Single-Molecule Surface-Enhanced Raman Spectroscopy." Sensors 22, no. 13 (June 29, 2022): 4889. http://dx.doi.org/10.3390/s22134889.

Full text
Abstract:
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.
APA, Harvard, Vancouver, ISO, and other styles
13

Le Ru, Eric C., and Pablo G. Etchegoin. "Single-Molecule Surface-Enhanced Raman Spectroscopy." Annual Review of Physical Chemistry 63, no. 1 (May 5, 2012): 65–87. http://dx.doi.org/10.1146/annurev-physchem-032511-143757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Frontiera, Renee R., Anne-Isabelle Henry, Natalie L. Gruenke, and Richard P. Van Duyne. "Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy." Journal of Physical Chemistry Letters 2, no. 10 (April 29, 2011): 1199–203. http://dx.doi.org/10.1021/jz200498z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barhoumi, Aoune, Dongmao Zhang, Felicia Tam, and Naomi J. Halas. "Surface-Enhanced Raman Spectroscopy of DNA." Journal of the American Chemical Society 130, no. 16 (April 2008): 5523–29. http://dx.doi.org/10.1021/ja800023j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tian, Z. Q., W. H. Li, B. W. Mao, S. Z. Zou, and J. S. Gao. "Potential-Averaged Surface-Enhanced Raman Spectroscopy." Applied Spectroscopy 50, no. 12 (December 1996): 1569–77. http://dx.doi.org/10.1366/0003702963904575.

Full text
Abstract:
This paper describes a novel technique called potential-averaged surface-enhanced Raman spectroscopy (PASERS) which has several advantages over SERS. A PASERS spectrum is acquired when the electrode is rapidly modulated between two potentials by applying a square-wave voltage. The potential-averaged SERS spectrum contains all the information on the surface species at the two modulated potentials, and each individual SERS spectrum can then be extracted by deconvolution. By properly choosing the two modulating potentials, one can obtain SERS spectra of surface species at electrode potentials where SERS-active sites are normally unstable. PASERS also leads to a unique way of studying complex interfacial kinetic processes by controlling the voltage pulse height, frequency, and shape. Moreover, the measurement of time-resolved spectra in the very low vibrational frequency region can be achieved by PASERS with the use of a conventional scanning spectrometer with a single-channel detector. In this paper, the main advantages of PASERS are illustrated by studying two typical SERS systems, i.e., thiocyanate ion and thiourea adsorbed at silver electrodes, respectively. It is shown that the potential-averaging method can be applied as a common method to many other existing spectroelectrochemical techniques.
APA, Harvard, Vancouver, ISO, and other styles
17

Schedin, Fred, Elefterios Lidorikis, Antonio Lombardo, Vasyl G. Kravets, Andre K. Geim, Alexander N. Grigorenko, Kostya S. Novoselov, and Andrea C. Ferrari. "Surface-Enhanced Raman Spectroscopy of Graphene." ACS Nano 4, no. 10 (September 21, 2010): 5617–26. http://dx.doi.org/10.1021/nn1010842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xiong, Min, and Jian Ye. "Reproducibility in surface-enhanced Raman spectroscopy." Journal of Shanghai Jiaotong University (Science) 19, no. 6 (November 30, 2014): 681–90. http://dx.doi.org/10.1007/s12204-014-1566-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Abu-Hatab, Nahla A., Joshy F. John, Jenny M. Oran, and Michael J. Sepaniak. "Multiplexed Microfluidic Surface-Enhanced Raman Spectroscopy." Applied Spectroscopy 61, no. 10 (October 2007): 1116–22. http://dx.doi.org/10.1366/000370207782217842.

Full text
Abstract:
Over the past few decades, surface-enhanced Raman spectroscopy (SERS) has garnered respect as an analytical technique with significant chemical and biological applications. SERS is important for the life sciences because it can provide trace level detection, a high level of structural information, and enhanced chemical detection. However, creating and successfully implementing a sensitive, reproducible, and robust SERS active substrate continues to be a challenging task. Herein, we report a novel method for SERS that is based upon using multiplexed microfluidics (MMFs) in a polydimethylsiloxane platform to perform parallel, high throughput, and sensitive detection/identification of single or various analytes under easily manipulated conditions. A facile passive pumping method is used to deliver Ag colloids and analytes into the channels where SERS measurements are done under nondestructive flowing conditions. With this approach, SERS signal reproducibility is found to be better than 7%. Utilizing a very high numerical aperture microscope objective with a confocal-based Raman spectrometer, high sensitivity is achieved. Moreover, the long working distance of this objective coupled with an appreciable channel depth obviates normal alignment issues expected with translational multiplexing. Rapid evaluation of the effects of anion activators and the type of colloid employed on SERS performance are used to demonstrate the efficiency and applicability of the MMF approach. SERS spectra of various pesticides were also obtained. Calibration curves of crystal violet (non-resonant enhanced) and Mitoxantrone (resonant enhanced) were generated, and the major SERS bands of these analytes were observable down to concentrations in the low nM and sub-pM ranges, respectively. While conventional random morphology colloids were used in most of these studies, unique cubic nanoparticles of silver were synthesized with different sizes and studied using visible wavelength optical extinction spectrometry, scanning electron microscopy, and the MMF-SERS approach.
APA, Harvard, Vancouver, ISO, and other styles
20

Toscano, G., S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen. "Surface-enhanced Raman spectroscopy: nonlocal limitations." Optics Letters 37, no. 13 (June 21, 2012): 2538. http://dx.doi.org/10.1364/ol.37.002538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rohr, Thomas E., Therese Cotton, Ni Fan, and Peter J. Tarcha. "Immunoassay employing surface-enhanced Raman spectroscopy." Analytical Biochemistry 182, no. 2 (November 1989): 388–98. http://dx.doi.org/10.1016/0003-2697(89)90613-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hu, Jun, Rong Sheng Sheng, Zhi San Xu, and Yun'e Zeng. "Surface enhanced Raman spectroscopy of lysozyme." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 51, no. 6 (June 1995): 1087–96. http://dx.doi.org/10.1016/0584-8539(94)00225-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Lu, Chao Meng, Hao Yang, and Wending Zhang. "Azimuthal vector beam illuminating plasmonic tips circular cluster for surface-enhanced Raman spectroscopy." Chinese Optics Letters 21, no. 3 (2023): 033603. http://dx.doi.org/10.3788/col202321.033603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

D’Acunto, Mario. "Surface Enhanced Raman Spectroscopy and Intracellular Components." Proceedings 27, no. 1 (September 20, 2019): 14. http://dx.doi.org/10.3390/proceedings2019027014.

Full text
Abstract:
In the last decade, surface-enhanced Raman spectroscopy (SERS) met increasing interest in the detection of chemical and biological agents due to its rapid performance and ultra-sensitive features. SERS is a combination of Raman spectroscopy and nanotechnology; it includes the advantages of Raman spectroscopy, providing rapid spectra collection, small sample sizes, and characteristic spectral fingerprints for specific analytes. In this paper, we detected label-free SERS signals for arbitrarily configurations of dimers, trimers, etc., composed of gold nanoshells (AuNSs) and applied to the mapping of osteosarcoma intracellular components.
APA, Harvard, Vancouver, ISO, and other styles
25

PETTINGER, Bruno, Gennaro PICARDI, Rolf SCHUSTER, and Gerhard ERTL. "Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy." Electrochemistry 68, no. 12 (December 5, 2000): 942–49. http://dx.doi.org/10.5796/electrochemistry.68.942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sinha, Rajeev K. "An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy." Instruments and Experimental Techniques 64, no. 6 (November 2021): 840–47. http://dx.doi.org/10.1134/s002044122106018x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Vo-Dinh, T., and D. L. Stokes. "Surface-Enhanced Raman Vapor Dosimeter." Applied Spectroscopy 47, no. 10 (October 1993): 1728–32. http://dx.doi.org/10.1366/0003702934334679.

Full text
Abstract:
This paper describes a new direct-reading personal dosimeter designed to detect vapors of organic chemicals. The device employs the surface-enhanced Raman scattering (SERS) technique for direct measurement of the amount of analyte collected on the dosimeter, requiring no sample desorption or wet-chemical extraction procedure. The time-weighted average exposure to the chemical vapors can be determined on the dosimeter substrate. The results with benzoic acid used as the model compound illustrate the usefulness of this SERS-based dosimeter.
APA, Harvard, Vancouver, ISO, and other styles
28

Panneerselvam, Rajapandiyan, Guo-Kun Liu, Yao-Hui Wang, Jun-Yang Liu, Song-Yuan Ding, Jian-Feng Li, De-Yin Wu, and Zhong-Qun Tian. "Surface-enhanced Raman spectroscopy: bottlenecks and future directions." Chemical Communications 54, no. 1 (2018): 10–25. http://dx.doi.org/10.1039/c7cc05979e.

Full text
Abstract:
This feature article discusses developmental bottleneck issues in surface Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades and future perspectives.
APA, Harvard, Vancouver, ISO, and other styles
29

Sánchez-Cortés, S., M. Vasina, O. Francioso, and J. V. Garcı́a-Ramos. "Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides." Vibrational Spectroscopy 17, no. 2 (September 1998): 133–44. http://dx.doi.org/10.1016/s0924-2031(98)00025-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Leopold, N., J. R. Baena, M. Bolboacǎ, O. Cozar, W. Kiefer, and B. Lendl. "Raman, IR, and surface-enhanced Raman spectroscopy of papaverine." Vibrational Spectroscopy 36, no. 1 (October 2004): 47–55. http://dx.doi.org/10.1016/j.vibspec.2004.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Matsukovich, A. S., E. V. Shabunya-Klyachkovskaya, M. Sawczak, K. Grochowska, D. Maskowicz, and G. Śliwiński. "Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy." International Journal of Nanoscience 18, no. 03n04 (June 2019): 1940069. http://dx.doi.org/10.1142/s0219581x19400696.

Full text
Abstract:
This work shows comparative analysis of surface-enhanced Raman scattering (SERS) activity of gold nanoparticles fabricated by chemical synthesis and laser ablation methods. The gold nanoparticles prepared by laser ablation (Au-LA) are more effective for SERS than those prepared chemically (Au-citr). The “analyte on Au film” configuration allows obtaining enhancement of Raman scattering up to 104 in case of Au-LA nanoparticles and up to 102 in case of Au-citr. Also the “sandwich” configuration for Au-LA gives additional enhancement of SERS up to two times, and for Au-citr up to one order, that is consistent with theoretical calculations.
APA, Harvard, Vancouver, ISO, and other styles
32

Gruenke, Natalie L., M. Fernanda Cardinal, Michael O. McAnally, Renee R. Frontiera, George C. Schatz, and Richard P. Van Duyne. "Ultrafast and nonlinear surface-enhanced Raman spectroscopy." Chemical Society Reviews 45, no. 8 (2016): 2263–90. http://dx.doi.org/10.1039/c5cs00763a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Feng Shangyuan, 冯尚源, 陈荣 Chen Rong, 李永增 Li Yongzeng, 陈冠楠 Chen Guannan, 林居强 Lin Juqiang, 林文硕 Lin Wenshuo, 陈伟炜 Chen Weiwei, 陈杰斯 Chen Jiesi, and 俞允 Yu Yun. "Surface-Enhanced Raman Spectroscopy of Dangshen Decoction." Chinese Journal of Lasers 37, no. 1 (2010): 121–24. http://dx.doi.org/10.3788/cjl20103701.0121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Meheretu, Getnet Melese, Dana Cialla, and J. Popp. "Surface Enhanced Raman Spectroscopy on Silver Nanoparticles." International Journal of Biochemistry and Biophysics 2, no. 4 (October 2014): 63–67. http://dx.doi.org/10.13189/ijbb.2014.020403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang Ming, 张. 明., 朱绍玲 Zhu Shaoling, 高. 飞. Gao Fei, and 罗. 果. Luo Guo. "Breast cancer oxyhemoglobin surface enhanced Raman spectroscopy." Infrared and Laser Engineering 46, no. 4 (2017): 433001. http://dx.doi.org/10.3788/irla201746.0433001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wu, De-Yin, Jian-Feng Li, Bin Ren, and Zhong-Qun Tian. "Electrochemical surface-enhanced Raman spectroscopy of nanostructures." Chemical Society Reviews 37, no. 5 (2008): 1025. http://dx.doi.org/10.1039/b707872m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ding, Song-Yuan, En-Ming You, Zhong-Qun Tian, and Martin Moskovits. "Electromagnetic theories of surface-enhanced Raman spectroscopy." Chemical Society Reviews 46, no. 13 (2017): 4042–76. http://dx.doi.org/10.1039/c7cs00238f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Alvarez-Puebla, Ramo´n A., Xing Yi Ling, Patrizio Candeloro, and Marc Lamy de la Chapelle. "Special issue on surface-enhanced Raman spectroscopy." Journal of Optics 17, no. 11 (October 23, 2015): 110201. http://dx.doi.org/10.1088/2040-8978/17/11/110201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ran An, 安冉, 欧全宏 Quanhong Ou, 刘刚 Gang Liu, 杨卫梅 Weimei Yang, 符致秋 Zhiqiu Fu, 李建美 Jianmei Li, and 时有明 Youming Shi. "Surface-Enhanced Raman Spectroscopy of Mushroom Spores." Laser & Optoelectronics Progress 56, no. 15 (2019): 153001. http://dx.doi.org/10.3788/lop56.153001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

McFarland, Adam D., Matthew A. Young, Jon A. Dieringer, and Richard P. Van Duyne. "Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy." Journal of Physical Chemistry B 109, no. 22 (June 2005): 11279–85. http://dx.doi.org/10.1021/jp050508u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nagai, Yusuke, Tatsuya Yamaguchi, and Kotaro Kajikawa. "Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy." Journal of Physical Chemistry C 116, no. 17 (April 23, 2012): 9716–23. http://dx.doi.org/10.1021/jp211234p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lorén, A., J. Engelbrektsson, C. Eliasson, M. Josefson, J. Abrahamsson, M. Johansson, and K. Abrahamsson. "Internal Standard in Surface-Enhanced Raman Spectroscopy." Analytical Chemistry 76, no. 24 (December 2004): 7391–95. http://dx.doi.org/10.1021/ac0491298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Perevedentseva, E., A. Karmenyan, P. H. Chung, Y. T. He, and C. L. Cheng. "Surface enhanced Raman spectroscopy of carbon nanostructures." Surface Science 600, no. 18 (September 2006): 3723–28. http://dx.doi.org/10.1016/j.susc.2006.01.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Milekhin, A. G., L. L. Sveshnikova, T. A. Duda, N. A. Yeryukov, E. E. Rodyakina, A. K. Gutakovskii, S. A. Batsanov, A. V. Latyshev, and D. R. T. Zahn. "Surface-enhanced Raman spectroscopy of semiconductor nanostructures." Physica E: Low-dimensional Systems and Nanostructures 75 (January 2016): 210–22. http://dx.doi.org/10.1016/j.physe.2015.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chauvet, Romain, Fabienne Lagarde, Thomas Charrier, Ali Assaf, Gerald Thouand, and Philippe Daniel. "Microbiological identification by surface-enhanced Raman spectroscopy." Applied Spectroscopy Reviews 52, no. 2 (July 7, 2016): 123–44. http://dx.doi.org/10.1080/05704928.2016.1209760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Haynes, Christy L., and Richard P. Van Duyne. "Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy†." Journal of Physical Chemistry B 107, no. 30 (July 2003): 7426–33. http://dx.doi.org/10.1021/jp027749b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lemma, Tibebe, Jin Wang, Kai Arstila, Vesa P. Hytönen, and J. Jussi Toppari. "Identifying yeasts using surface enhanced Raman spectroscopy." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 218 (July 2019): 299–307. http://dx.doi.org/10.1016/j.saa.2019.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Durucan, Onur, Tomas Rindzevicius, Michael Stenbæk Schmidt, Marco Matteucci, and Anja Boisen. "Nanopillar Filters for Surface-Enhanced Raman Spectroscopy." ACS Sensors 2, no. 10 (September 29, 2017): 1400–1404. http://dx.doi.org/10.1021/acssensors.7b00499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lin, Xiu-Mei, Yan Cui, Yan-Hui Xu, Bin Ren, and Zhong-Qun Tian. "Surface-enhanced Raman spectroscopy: substrate-related issues." Analytical and Bioanalytical Chemistry 394, no. 7 (April 19, 2009): 1729–45. http://dx.doi.org/10.1007/s00216-009-2761-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Vongsvivut, Jitraporn, Evan G. Robertson, and Don McNaughton. "Surface-Enhanced Raman Scattering Spectroscopy of Resveratrol." Australian Journal of Chemistry 61, no. 12 (2008): 921. http://dx.doi.org/10.1071/ch08204.

Full text
Abstract:
We report here, for the first time, the surface-enhanced Raman scattering (SERS) spectra of resveratrol using KNO3-aggregated citrate-reduced silver (Ag) colloids. The technique provided a substantial spectral enhancement and therefore good quality spectra of resveratrol at parts per million (ppm) concentrations. The detection limit was found to be <1 μM, equivalent to <0.2 ppm. The SERS profile additionally closely resembled its normal solid-state Raman spectrum with some changes in relative intensity. These intensity changes, together with a precise band assignment aided by density functional theory calculations at the B3LYP/6–31G(d) level, allowed the determination of the structural orientation of the adsorbed resveratrol on the surface of the metal nanoparticles. In particular, the SERS spectra obtained at different resveratrol concentrations exhibited concentration-dependent features, suggesting an influence of surface coverage on the orientation of the adsorbed molecules. At a high concentration, an adoption of close-to-upright orientation of resveratrol adsorbed on the metal surface through the p-OH phenyl ring is favoured. The binding structure is, however, altered at lower surface coverage when the concentration decreases to a tilted orientation with the trans-olefin C=C bond aligning closer to parallel to the surface of the Ag nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography