Academic literature on the topic 'Surface-enhanced Raman spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface-enhanced Raman spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surface-enhanced Raman spectroscopy"

1

NISHINO, Tomoaki. "Surface-enhanced Raman Spectroscopy." Analytical Sciences 34, no. 9 (September 10, 2018): 1061–62. http://dx.doi.org/10.2116/analsci.highlights1809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stiles, Paul L., Jon A. Dieringer, Nilam C. Shah, and Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy." Annual Review of Analytical Chemistry 1, no. 1 (July 2008): 601–26. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haynes, Christy L., Adam D. McFarland, and Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy." Analytical Chemistry 77, no. 17 (September 2005): 338 A—346 A. http://dx.doi.org/10.1021/ac053456d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garrell, Robin L. "Surface-enhanced Raman spectroscopy." Analytical Chemistry 61, no. 6 (March 15, 1989): 401A—411A. http://dx.doi.org/10.1021/ac00181a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sur, Ujjal Kumar. "Surface-enhanced Raman spectroscopy." Resonance 15, no. 2 (February 2010): 154–64. http://dx.doi.org/10.1007/s12045-010-0016-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popp, Jürgen, and Thomas Mayerhöfer. "Surface-enhanced Raman spectroscopy." Analytical and Bioanalytical Chemistry 394, no. 7 (June 10, 2009): 1717–18. http://dx.doi.org/10.1007/s00216-009-2864-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bell, Steven E. J., and Narayana M. S. Sirimuthu. "Quantitative surface-enhanced Raman spectroscopy." Chemical Society Reviews 37, no. 5 (2008): 1012. http://dx.doi.org/10.1039/b705965p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nie, Shuming, Leigh Ann Lipscomb, and Nai-Teng Yu. "Surface-Enhanced Hyper-Raman Spectroscopy." Applied Spectroscopy Reviews 26, no. 3 (September 1991): 203–76. http://dx.doi.org/10.1080/05704929108050881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keller, Emily L., Nathaniel C. Brandt, Alyssa A. Cassabaum, and Renee R. Frontiera. "Ultrafast surface-enhanced Raman spectroscopy." Analyst 140, no. 15 (2015): 4922–31. http://dx.doi.org/10.1039/c5an00869g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kudelski, Andrzej. "Nanomaterials for Surface Enhanced Raman Spectroscopy." Nanomaterials 13, no. 3 (January 18, 2023): 402. http://dx.doi.org/10.3390/nano13030402.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Surface-enhanced Raman spectroscopy"

1

Scherzer, Ryan D. "Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates." UNF Digital Commons, 2017. http://digitalcommons.unf.edu/etd/760.

Full text
Abstract:
Raman spectroscopy is employed by NASA, and many others, to detect trace amounts of substances. Unfortunately, the Raman signal is generally too weak to detect when very small, but non-trivial, amounts of molecules are present. One way around this weak signal is to use surface enhanced Raman spectroscopy (SERS). When used as substrates for SERS, metallic nanorods grown using physical vapor deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 1012. However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation as a function of time and exposure to harsh environment. Exposure to harsh environments is an enormous issue for NASA; considering all environments experienced during space missions will be drastically different from Earth regarding atmosphere pressure, atmosphere composition, and environmental temperature. Au and Ag nanorods suffer from a thermochemical kinetic phenomenon where the surface atoms diffuse and cause the nanostructures to coalesce towards bulk structure. When in bulk, SERS enhancement is lost and the substrate becomes useless. A stable structure for SERS detection is designed through engineering the barriers to surface diffusion. Aluminum (Al) nanorods are forced to undergo surface diffusion through thermal annealing and form rough mounds with a stable terminating oxide layer. When Ag is deposited on top of this Al structure, it becomes kinetically bound and changes to physical structure become impeded. Using this paradigm, samples are grown with varied lengths of Ag and are then characterized using scanning electron microscopy (SEM) and Ultraviolet-Visible spectroscopy. The performance of the samples are then tested using SERS experiments for the detection of trace amounts of rhodamine 6G, a ‘gold standard’ analyte. Characterization shows the effectiveness of the Raman substrates remains stable up to 500°C. Transitioning to basic scientific investigation, next is to strive to isolate the individual impacts of chemical and physical changes to the Ag nanostructure and how they affect the Raman signal. Substrates are compared over the course of a month long experiment to determine the effects of vacuum storage and addressing the effects of chemical adsorbance. Additionally, this was attempted by comparing the signal degradation of Ag nanorods to that of Au, which is known to be chemically inert, allowing for the separation of chemical and physical effects. Although Ag and Au have similar melting points, Ag physically coarsened significantly more. FTIR also showed significant chemical contamination of the Ag, but not Au. A hypothesis is proposed for future investigations into the chemical changes and how they are coupled with and promote the physical changes in nanostructures. Overall, the novel SERS substrate engineered here may enable the detection of trace amounts of molecules in harsh environments and over long timescales. Conditions such as those found on space missions, where substrates will experience months or years of travel, high vacuum environments, and environments of extreme temperatures.
APA, Harvard, Vancouver, ISO, and other styles
2

Xie, Yu-Tao. "Surface-enhanced hyper raman and surface-enhanced raman scattering : novel substrates, surface probing molecules and chemical applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202007%20XIE.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gant, Virgil Alexander. "Detection of integrins using surface enhanced raman spectroscopy." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/2304.

Full text
Abstract:
Integrins are transmembrane heterodimer protein receptors that mediate adherence to both the intracellular cytoskeleton and extracellular matrix. They play a major role in cellular adhesion and the breadth of their importance in biology is only recently being understood. The ability to detect concentrations of integrins on the cell surface, spatially resolve them, and study the dynamics of their behavior would be a significant advance in this field. Ultimately, the ability to detect dynamic changes of integrins on the surface of a cell maybe possible by developing a combined device such as an atomic force microscope (AFM) and surface enhanced Raman spectroscopy (SERS) system. However, the focus of this research is to first determine if integrins can be detected using SERS. Surface enhanced Raman spectroscopy (SERS) is technique used to detect the presence of analytes at the nanomolar level or below, through detection of inelastically scattered light. This thesis discusses the detection of integrins employing SERS as the detection modality. Integrins have been detected, in solution, using two silver colloids as the enhancing surface. Two silver colloid preparation methods are compared by ease of formulation and degree of enhancement in this thesis. Citrate and hydroxylamine hydrochloride (HA-HCl) reduced silver colloids were prepared through wet chemistry,compared using UV-Vis light spectroscopy, and tested for surface enhancement using adenine (a strong SERS active molecule), and two different integrins, (alpha)V(beta)3 and (alpha)5(beta)1. Results indicated that both colloids demonstrate SERS activity for varying concentrations of adenine as compared to standard non-enhanced Raman, however, only the citrate reduced colloid showed significant enhancement effect for the integrins.
APA, Harvard, Vancouver, ISO, and other styles
4

Cunningham, Dale. "Fundamental studies of surface enhanced resonance Raman spectroscopy." Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sockalingum, Dhruvananda. "Surface enhanced Raman spectroscopy in the near-infrared." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sharma, Narayan. "Solution Processable Surface Enhanced Raman Spectroscopy (SERS) Substrate." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434375587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsoutsi, Dionysia. "Inorganic Ions Sensing by surface-enhanced Raman scattering spectroscopy." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/288213.

Full text
Abstract:
En aquest projecte de tesi s'ha aconseguit desenvolupar un sistema de detecció, identificació i quantificació independent d'ions inorgànics. La detecció dels ions es basa en la diferent afinitat cap a diferents lligands orgànics mitjançant l'espectroscòpia de dispersió Raman augmentada per superfícies (surface-enhanced Raman scattering, SERS). En resum, com a substrat s'utilitzaran nanopartícules de plata o microesferes nanoestructurades que es prepararan mitjançant l'adsorció de nanopartícules d'or sobre la superfície de microesferes de sílice a partir del protocol de capa per capa i el seu posterior creixement epitaxial amb plata. Aquest últim pas es realitzarà a través de protocols desenvolupats en el nostre laboratori i té com a objectiu l'obtenció de superfícies plasmòniques discretes altament eficients en SERS. Els substrats es funcionalizaran posteriorment amb lligands orgànics tiolats amb alta afinitat per ions inorgànics (el fluoròfor orgànic, amino-MQAE i la terpiridina, pztpy-DTC). Com a pas següent, es realitzarà la detecció i quantificació simultània dels ions combinant, per a la seva detecció, espectroscòpia SERS. Els canvis espectrals SERS, en la manera de vibració dels lligands organics, estan correlacionats com a funció de la concentració de cada ió amb límits de detecció comparables als de diversos mètodes analítics convencionals.
En este proyecto de tesis se ha conseguido desarrollar un sistema de detección, identificación y cuantificación independiente de iones inorgánicos. La detección de los iones se basa en su diferente afinidad hacia diferentes ligandos orgánicos a través de la espectroscopia de dispersión Raman aumentada por superficies (surface-enhanced Raman scattering, SERS). En resumen, como sustrato se utilizarán nanopartículas de plata o microesferas nanoestructuradas que se prepararán mediante la adsorción de nanopartículas de oro sobre la superficie de microesferas de sílice mediante el protocolo de capa por capa y su posterior crecimiento epitaxial con plata. Este último paso se realizará mediante protocolos desarrollados en nuestro laboratorio y tiene como objetivo la obtención de superficies plasmónicas discretas altamente eficientes en SERS. Los sustratos se funcionalizarán posteriormente con ligandos orgánicos tiolados con alta afinidad por iones inorgánicos (el fluoróforo orgánico, amino-MQAE y la terpiridina, pztpy-DTC). Como paso siguiente, se realizará la detección y cuantificación simultánea de los iones combinando para su detección espectroscopia SERS. Los cambios espectrales SERS en el modo de vibración de los ligandos orgánicos están correlacionados como función de la concentración de cada ion con límites de detección comparables a los de varios métodos analíticos convencionales.
In this research project we successfully developed a novel sensing system for the identification and quantification of inorganic ions independently by means of surface-enhanced Raman scattering (SERS) spectroscopy. The detection of the ions is based on their different affinity toward various organic ligands. In summary, we use as SERS-active substrates, either silver nanoparticles or composite nanostructured particles prepared by adsorption of gold nanoparticles on the surface of silica microbeads, using layer-by-layer assembly protocol and the subsequent epitaxial overgrowth of silver. This last step is performed using protocols developed in our laboratory and aims to the fabrication of highly plasmonic surfaces for SERS experiments. Next, the substrates are functionalized with thiolated organic ligands with high affinity toward inorganic ions (amino-MQAE, an organic fluorophore, and pztpy-DTC, a terpyridine). As a further step, the simultaneous identification and quantification of the ions, using SERS spectroscopy, is performed. Vibrational changes in the SERS spectra of the organic ligands are correlated as a function of the concentration of each ion with limits of detection comparable to those of several conventional analytical methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Mingwei. "In Situ Arsenic Speciation using Surface-enhanced Raman Spectroscopy." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3387.

Full text
Abstract:
Arsenic (As) undergoes extensive metabolism in biological systems involving numerous metabolites with varying toxicities. It is important to obtain reliable information on arsenic speciation for understanding toxicity and relevant modes of action. Currently, popular arsenic speciation techniques, such as chromatographic/electrophoretic separation following extraction of biological samples, may induce the alternation of arsenic species during sample preparation. The present study was aimed to develop novel arsenic speciation methods for biological matrices using surface-enhanced Raman spectroscopy (SERS), which, as a rapid and non-destructive photon scattering technique. The use of silver nanoparticles with different surface coating molecules as SERS substrates permits the measurement of four common arsenicals, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV). This speciation was successfully carried out using positively charged nanoparticles, and simultaneous detection of arsenicals was achieved. Secondly, arsenic speciation using coffee ring effect-based separation and SERS detection was explored on a silver nanofilm (AgNF), which was prepared by close packing of silver nanoparticles (AgNPs) on a glass substrate surface. Although arsenic separation using the conventional coffee ring effect is difficult because of the limited migration distance, a halo coffee ring was successfully developed through addition of surfactants, and was shown to be capable of arsenicals separation. The surfactants introduced in the sample solution reduce the surface tension of the droplet and generate strong capillary action. Consequently, solvent in the droplet migrated into the peripheral regions and the solvated arsenicals to migrated varying distances due to their differential affinity to AgNF, resulting in a separation of arsenicals in the peripheral region of the coffee ring. Finaly, a method combining experimental Raman spectra measurements and theoretical Raman spectra simulations was developed and employed to obtain Raman spectra of important and emerging arsenic metabolites. These arsenicals include monomethylarsonous acid (MMAIII), dimethylarsinous acid (DMAIII), dimethylmonothioarinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), S-(Dimethylarsenic) cysteine (DMAIIICys) and dimethylarsinous glutathione (DMAIIIGS). The fingerprint vibrational frequencies obtained here for various arsenicals, some of which have not reported previously, provide valuable information for future SERS detection of arsenicals.
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Qunjian. "Surface-enhanced raman scattering and surface-enhanced hyper raman scattering : a systematic study of various probing molecules on novel substrates /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202003%20HUANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

He, Lili Lin Mengshi. "Application of surface enhanced Raman spectroscopy to food safety issues." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6859.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 23, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Mengshi Lin. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Surface-enhanced Raman spectroscopy"

1

Prochazka, Marek. Surface-Enhanced Raman Spectroscopy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23992-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schlücker, Sebastian, ed. Surface Enhanced Raman Spectroscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Surface enhanced vibrational spectroscopy. Hoboken, NJ: Wiley, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fasolato, Claudia. Surface Enhanced Raman Spectroscopy for Biophysical Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03556-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schlücker, Sebastian. Surface enhanced Raman spectroscopy: Analytical, biophysical and life science applications. Weinheim: Wiley-VCH, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Etchegoin, Pablo G. (Pablo Gabriel), ed. Principles of surface-enhanced Raman spectroscopy: And related plasmonic effects. Amsterdam: Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biswas, Nandita. Development of a Raman Spectrometer to study surface enhanced Raman Scattering. Mumbai: Bhabha Atomic Research Centre, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsukuba Satellite Symposium on Single Molecule and Tip-Enhanced Raman Scattering (2006 Tsukuba Kenkyū Gakuen Toshi, Japan). SM-TERS 2006, Tsukuba Satellite Symposium on Single Molecule and Tip-enhanced Raman Scattering: Extended abstracts : August 17-19, 2006, AIST Tsukuba Center Auditorium, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan. Tsukuba, Japan: AIST, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Notholt, Justus. Untersuchungen zum oberflächenverstärkten Ramaneffekt im System Silber-Pyridin. Gauting bei München: A.S. Intemann und Ch.C. Intemann, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baia, Monica. Raman and SERS investigations of pharmaceuticals. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Surface-enhanced Raman spectroscopy"

1

Tehrani, Alireza Mazaheri, Faezeh Mohaghegh, and Arnulf Materny. "Surface-Enhanced Raman Spectroscopy (SERS)." In Raman Spectroscopy, 167–98. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prakash, Om. "Surface-Enhanced Raman Excitation Spectroscopy: An Overview." In Raman Spectroscopy, 215–32. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cialla-May, Dana, Anne März, and Jürgen Popp. "Surface-Enhanced Raman Spectroscopy." In Encyclopedia of Microfluidics and Nanofluidics, 3163–70. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cialla-May, Dana, Anne März, and Jürgen Popp. "Surface-Enhanced Raman Spectroscopy." In Encyclopedia of Microfluidics and Nanofluidics, 1–9. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1497-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weaver, M. J., P. Gao, D. Gosztola, M. L. Patterson, and M. A. Tadayyoni. "Surface-Enhanced Raman Spectroscopy." In ACS Symposium Series, 135–49. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0307.ch010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Etchegoin, Pablo G., and Eric C. Le Ru. "Basic Electromagnetic Theory of SERS." In Surface Enhanced Raman Spectroscopy, 1–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hildebrandt, Peter, Jiu-Ju Feng, Anja Kranich, Khoa H. Ly, Diego F. Martín, Marcelo Martí, Daniel H. Murgida, et al. "Electron Transfer of Proteins at Membrane Models." In Surface Enhanced Raman Spectroscopy, 219–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stevenson, Ross, Karen Faulds, and Duncan Graham. "Quantitative DNA Analysis Using Surface-Enhanced Resonance Raman Scattering." In Surface Enhanced Raman Spectroscopy, 241–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schlücker, Sebastian. "SERS Microscopy: Nanoparticle Probes and Biomedical Applications." In Surface Enhanced Raman Spectroscopy, 263–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kneipp, Janina. "1-P and 2-P Excited SERS as Intracellular Probe." In Surface Enhanced Raman Spectroscopy, 285–304. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Surface-enhanced Raman spectroscopy"

1

Bennett, Chris, Jon P. Camden, P. M. Champion, and L. D. Ziegler. "Surface Enhanced Hyper Raman Spectroscopy (SEHRS)." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kahraman, Mehmet, Ilknur Sur, Mustafa Culha, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Proteins." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Culha, Mustafa, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Microorganisms." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Weiqing, Yu Liu, Shuping Xu, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering Excited by Propagating Surface Plasmons." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ren, Bin, Zheng Liu, Xiang Wang, Zhi-Lin Yang, Zhong-Qun Tian, P. M. Champion, and L. D. Ziegler. "Electromagnetic Coupling Effect for Surface-enhanced Raman Spectroscopy and Tip-enhanced Raman Spectroscopy." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guicheteau, Jason, Steven Christesen, Ashish Tripathi, Erik Emmons, Darren Emge, Phillip Wilcox, Augustus W. Fountain, P. M. Champion, and L. D. Ziegler. "Raman and Surface-Enhanced Raman for Military Applications." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morisaki, Ryosuke, Takayuki Umakoshi, and Prabhat Verma. "Surface-enhanced low-frequency Raman spectroscopy." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cm16_10.

Full text
Abstract:
In this research, we for the first time demonstrated surface-enhanced low-frequency Raman spectroscopy. Low-frequency Raman scattering from a thin layered MoS2, which arises from inter-layer interaction, was highly enhanced by silver nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
8

Hernández-Vidales, Karen, Alejandra Loyola-Leyva, Kristal Enríquez-Ramos, and Francisco Javier González. "Glyphosate Assessment by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am5m.3.

Full text
Abstract:
We applied Raman and SERS spectroscopy to obtain the fingerprint of glyphosate, a worldwide used dangerous pesticide. We corroborate the utility of gold nanoparticles to improve the Raman scattering, obtaining an enhancement factor of 105.
APA, Harvard, Vancouver, ISO, and other styles
9

Pettinger, Bruno, Philip Schambach, Nicola R. Scott, P. M. Champion, and L. D. Ziegler. "Single Molecule Surface- and Tip-enhanced Raman Spectroscopy." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lombardi, John R., P. M. Champion, and L. D. Ziegler. "A Unified Theory Of Surface Enhanced Raman Scattering." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482717.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Surface-enhanced Raman spectroscopy"

1

Huser, T. R. Surface-Enhanced Raman Spectroscopy with High Spatial Resolution. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/15007309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Velev, Orlin D., Eric W. Kaler, and Abraham M. Lenhoff. Characterization and Optimization of Novel Nanostructured Metallic Substrates for Surface Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada398973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alvarez, Rene, Alexander J. Burdette, Xiaomeng Wu, Christian Kotanen, Yiping Zhao, and Ralph A. Tripp. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada605244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Ping, and Michael J. Weaver. Surface-Enhanced Raman Spectroscopy as a Probe or Adsorbate-Surface Bonding: Benzene and Monosubstituted Benzenes Adsorbed at Gold Electrodes. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada159978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sheng, Dai, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/893264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dai, Sheng, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/834954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dai, Sheng, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/834955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dai, Sheng, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/839076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsai, W. H., and F. J. Boerio. Characterization of Interphases Between PMDA/4-BDAF Polyimides and Silver Substrates Using Surface-Enhanced Raman Scattering and Reflection- Absorption Infrared Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada233531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography