Academic literature on the topic 'Surface-enhanced Raman scattering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface-enhanced Raman scattering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surface-enhanced Raman scattering"

1

Kneipp, Katrin. "Surface-enhanced Raman scattering." Physics Today 60, no. 11 (November 2007): 40–46. http://dx.doi.org/10.1063/1.2812122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çulha, Mustafa, Nickolay Lavrik, Brian M. Cullum, and Simion Astilean. "Surface-Enhanced Raman Scattering." Journal of Nanotechnology 2012 (2012): 1–2. http://dx.doi.org/10.1155/2012/413156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boerio, F. J. "Surface-enhanced raman scattering." Thin Solid Films 181, no. 1-2 (December 1989): 423–33. http://dx.doi.org/10.1016/0040-6090(89)90511-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campion, Alan, and Patanjali Kambhampati. "Surface-enhanced Raman scattering." Chemical Society Reviews 27, no. 4 (1998): 241. http://dx.doi.org/10.1039/a827241z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

FUTAMATA, Masayuki. "Surface Enhanced Raman Scattering." Hyomen Kagaku 33, no. 4 (2012): 216–22. http://dx.doi.org/10.1380/jsssj.33.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Otto, A., I. Mrozek, H. Grabhorn, and W. Akemann. "Surface-enhanced Raman scattering." Journal of Physics: Condensed Matter 4, no. 5 (February 3, 1992): 1143–212. http://dx.doi.org/10.1088/0953-8984/4/5/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yukhymchuk, V. O. "Efficient core-SiO2/shell-Au nanostructures for surface enhanced Raman scattering." Semiconductor Physics Quantum Electronics and Optoelectronics 17, no. 3 (September 30, 2014): 217–21. http://dx.doi.org/10.15407/spqeo17.03.217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liebel, Matz, Nicolas Pazos-Perez, Niek F. van Hulst, and Ramon A. Alvarez-Puebla. "Surface-enhanced Raman scattering holography." Nature Nanotechnology 15, no. 12 (September 28, 2020): 1005–11. http://dx.doi.org/10.1038/s41565-020-0771-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kruszewski, Stefan. "Surface enhanced Raman scattering phenomenon." Crystal Research and Technology 41, no. 6 (June 2006): 562–69. http://dx.doi.org/10.1002/crat.200510626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhiming Liu, Zhiming Liu, Huiqing Zhong Huiqing Zhong, Zhouyi Guo Zhouyi Guo, and Biwen Yang Biwen Yang. "Conformation-dependent surface-enhanced Raman scattering of graphene oxide/metal nanoparticle hybrids." Chinese Optics Letters 11, no. 8 (2013): 083001–83003. http://dx.doi.org/10.3788/col201311.083001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Surface-enhanced Raman scattering"

1

Maher, Robert Christopher. "Surface enhanced Raman scattering." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/7843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xie, Yu-Tao. "Surface-enhanced hyper raman and surface-enhanced raman scattering : novel substrates, surface probing molecules and chemical applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202007%20XIE.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Qunjian. "Surface-enhanced raman scattering and surface-enhanced hyper raman scattering : a systematic study of various probing molecules on novel substrates /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202003%20HUANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Diaz, J. A. D. "Nano-structured substrates for surface-enhanced Raman scattering." Thesis, Queen's University Belfast, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McCabe, Ailie Fiona. "Remote detection using surface enhanced resonance Raman scattering." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsoutsi, Dionysia. "Inorganic Ions Sensing by surface-enhanced Raman scattering spectroscopy." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/288213.

Full text
Abstract:
En aquest projecte de tesi s'ha aconseguit desenvolupar un sistema de detecció, identificació i quantificació independent d'ions inorgànics. La detecció dels ions es basa en la diferent afinitat cap a diferents lligands orgànics mitjançant l'espectroscòpia de dispersió Raman augmentada per superfícies (surface-enhanced Raman scattering, SERS). En resum, com a substrat s'utilitzaran nanopartícules de plata o microesferes nanoestructurades que es prepararan mitjançant l'adsorció de nanopartícules d'or sobre la superfície de microesferes de sílice a partir del protocol de capa per capa i el seu posterior creixement epitaxial amb plata. Aquest últim pas es realitzarà a través de protocols desenvolupats en el nostre laboratori i té com a objectiu l'obtenció de superfícies plasmòniques discretes altament eficients en SERS. Els substrats es funcionalizaran posteriorment amb lligands orgànics tiolats amb alta afinitat per ions inorgànics (el fluoròfor orgànic, amino-MQAE i la terpiridina, pztpy-DTC). Com a pas següent, es realitzarà la detecció i quantificació simultània dels ions combinant, per a la seva detecció, espectroscòpia SERS. Els canvis espectrals SERS, en la manera de vibració dels lligands organics, estan correlacionats com a funció de la concentració de cada ió amb límits de detecció comparables als de diversos mètodes analítics convencionals.
En este proyecto de tesis se ha conseguido desarrollar un sistema de detección, identificación y cuantificación independiente de iones inorgánicos. La detección de los iones se basa en su diferente afinidad hacia diferentes ligandos orgánicos a través de la espectroscopia de dispersión Raman aumentada por superficies (surface-enhanced Raman scattering, SERS). En resumen, como sustrato se utilizarán nanopartículas de plata o microesferas nanoestructuradas que se prepararán mediante la adsorción de nanopartículas de oro sobre la superficie de microesferas de sílice mediante el protocolo de capa por capa y su posterior crecimiento epitaxial con plata. Este último paso se realizará mediante protocolos desarrollados en nuestro laboratorio y tiene como objetivo la obtención de superficies plasmónicas discretas altamente eficientes en SERS. Los sustratos se funcionalizarán posteriormente con ligandos orgánicos tiolados con alta afinidad por iones inorgánicos (el fluoróforo orgánico, amino-MQAE y la terpiridina, pztpy-DTC). Como paso siguiente, se realizará la detección y cuantificación simultánea de los iones combinando para su detección espectroscopia SERS. Los cambios espectrales SERS en el modo de vibración de los ligandos orgánicos están correlacionados como función de la concentración de cada ion con límites de detección comparables a los de varios métodos analíticos convencionales.
In this research project we successfully developed a novel sensing system for the identification and quantification of inorganic ions independently by means of surface-enhanced Raman scattering (SERS) spectroscopy. The detection of the ions is based on their different affinity toward various organic ligands. In summary, we use as SERS-active substrates, either silver nanoparticles or composite nanostructured particles prepared by adsorption of gold nanoparticles on the surface of silica microbeads, using layer-by-layer assembly protocol and the subsequent epitaxial overgrowth of silver. This last step is performed using protocols developed in our laboratory and aims to the fabrication of highly plasmonic surfaces for SERS experiments. Next, the substrates are functionalized with thiolated organic ligands with high affinity toward inorganic ions (amino-MQAE, an organic fluorophore, and pztpy-DTC, a terpyridine). As a further step, the simultaneous identification and quantification of the ions, using SERS spectroscopy, is performed. Vibrational changes in the SERS spectra of the organic ligands are correlated as a function of the concentration of each ion with limits of detection comparable to those of several conventional analytical methods.
APA, Harvard, Vancouver, ISO, and other styles
7

Khaywah, Mohammad Yehia. "New ultrasensitive bimetallic substrates for surface enhanced Raman scattering." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0041/document.

Full text
Abstract:
Afin de développer des capteurs ultrasensibles des substrats fiables pour la diffusion Raman exaltée de surface (SERS) ont été fabriqués. Les deux meilleurs candidats de matériaux constituant les nanoparticules pour des substrats SERS sont l’argent et l’or. L’argent présente un meilleur facteur d’exaltation de l'intensité Raman et l’or est stable dans les milieux biologiques. C’est pourquoi la combinaison de ces deux métaux dans des nanostructures bimétalliques semble être une approche prometteuse qui combine les propriétés de surface de l’or et d’exaltation de l’argent. Le recuit thermique des couches métalliques minces est utilisé comme une technique simple et peu coûteuse. Cette dernière permet d’élaborer des substrats homogènes et reproductibles de nanoparticules bimétalliques or-argent ayant un facteur d’exaltation importante. Ces nanoparticules gardent leurs propriétés d’exaltation même après une année de fabrication. En jouant sur la composition de nanoparticules bimétalliques il est possible d’avoir une résonance de plasmons de surface localisés (LSPR) sur tout le spectre visible. Ces substrats sont caractérisés par une exaltation SERS supérieure lorsque la résonance plasmon est plus proche de la longueur d'onde d'excitation Raman. En outre, les nanoparticules bimétalliques de différentes tailles, compositions ont été réalisés par lithographie électronique. L’étude systématique de leurs propriétés plasmoniques et de leur exaltation SERS a révélé une conservation du lien entre résonance plasmon et signal SERS
Driven by the interest in finding ultrasensitive sensors devices, reliable surface enhanced Raman scattering (SERS) based substrates are fabricated. Silver and gold nanoparticles are two of the best candidates for SERS substrates where Ag nanoparticles exhibit large enhancing ability in Raman intensity while Au nanostructures are stable in biological systems. Hence, combining the two metals in bimetallic nanostructures appeared to be a promising approach in order to sum the merits of Au surface properties and Ag enhancing ability. Thermal annealing of thin metallic films is used as a simple and relatively inexpensive technique to elaborate homogenous and reproducible Ag/Au bimetallic nanoparticles SERS substrates with high enhancing ability. The fabricated nanoparticles proved their enhancing stability even after one year of fabrication. Manipulating the composition of Ag/Au bimetallic NPs resulted in tuning the Localized Surface Plasmon Resonance (LSPR) over the whole visible spectrum, where the substrates are characterized with higher SERS enhancement when they exhibit LSPR closer to the Raman excitation wavelength. Additionally, bimetallic nanoparticles patterns with different size, composition and lattice constants have been conducted by electron beam lithography. The systematic study of their interesting plasmonic and SERS enhancing properties revealed maintenance in the LSPR-SERS relation by changing the nanoparticle size
APA, Harvard, Vancouver, ISO, and other styles
8

Sengupta, Atanu. "Detection of biological species by surface enhanced Raman scattering /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harper, Mhairi. "DNA diagnostic assays using Surface Enhanced Raman Scattering (SERS)." Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=22401.

Full text
Abstract:
DNA is the prerequisite for all biological life and its discovery has revolutionised the understanding of biomolecular interactions and disease expression. This has enabled significant improvements in patient diagnosis and medical treatment to be carried out. The advancements in technology and instrumentation have continually progressed this knowledge and continue to push the boundaries of diagnostic and clinical advancements. One effective way to achieve this is through application of dye labelled DNA sequences and metallic nanoparticle suspensions. This research details an understanding of the interaction between dye labelled oligonucleotides and silver nanoparticle surfaces, which generate strong surface enhanced Raman scattering (SERS) responses through specific hybridisation events which correlate to the presence of targeted sequences. During this study, the attraction of oligonucleotides onto metal nanoparticles was shown to be driven through the DNA nucleobases. Therefore, the increased exposure of the base groups within single stranded DNA sequences generated a higher affinity for metal surfaces which in turn produced stronger SERS responses when compared to double stranded DNA. This principle was utilised within a DNA detection assay to successfully demonstrate the presence of target DNA sequences. Two novel DNA detection assays were also investigated which utilised SERS to determine the presence of sequences relating to the methicillin resistant Staphylococcus aureus (MRSA) strain. A solution based detection method was developed through coupling a TaqMan assay with SERS. This combination enabled highly specific detection of clinically relevant sequences of MRSA to be obtained with 7 fM limits of detection achievable. The multiple detection of different genomic S. aureus strains was achieved through the molecularly specific and narrow emission spectral profiles obtained. A contrasting DNA detection strategy which relies upon the hybridisation of comple mentary sequences on a solid substrate surface was shown. Silver nanoparticles were functionalised with specific DNA sequences and a variety of SERS active molecules, enabling the selective detection of target sequences from nitrocellulose membranes. This thesis has exploited SERS to enable the specific identification of DNA sequences to be achieved via utilisation of silver nanoparticles. Through SERS, an insight into the interactions of DNA and silver nanoparticles surfaces has been gained as well as enhancing the sensitivity and specificity achievable within SERS detection assays.
APA, Harvard, Vancouver, ISO, and other styles
10

Stewart, Shona Diane. "Surface enhanced Raman scattering on electrochemically prepared silver surfaces." Thesis, Queensland University of Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Surface-enhanced Raman scattering"

1

Ozaki, Yukihiro, Katrin Kneipp, and Ricardo Aroca, eds. Frontiers of Surface-Enhanced Raman Scattering. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118703601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Milton, Kerker, ed. Selected papers on surface-enhanced raman scattering. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Polubotko, A. M. The dipole-quadrupole theory of surface enhanced Raman scattering. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Atkinson, B. M. Characterization of substrates for surface-enhanced Raman scattering. Manchester: UMIST, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Biswas, Nandita. Development of a Raman Spectrometer to study surface enhanced Raman Scattering. Mumbai: Bhabha Atomic Research Centre, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsukuba Satellite Symposium on Single Molecule and Tip-Enhanced Raman Scattering (2006 Tsukuba Kenkyū Gakuen Toshi, Japan). SM-TERS 2006, Tsukuba Satellite Symposium on Single Molecule and Tip-enhanced Raman Scattering: Extended abstracts : August 17-19, 2006, AIST Tsukuba Center Auditorium, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan. Tsukuba, Japan: AIST, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kneipp, Katrin, Martin Moskovits, and Harald Kneipp, eds. Surface-Enhanced Raman Scattering. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-33567-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Surface Enhanced Raman Scattering. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chang, Richard. Surface Enhanced Raman Scattering. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kneipp, Katrin, Martin Moskovits, and Harald Kneipp, eds. Surface-Enhanced Raman Scattering – Physics and Applications. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11663898.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Surface-enhanced Raman scattering"

1

Suëtaka, W., and John T. Yates. "Surface Enhanced Raman Scattering." In Surface Infrared and Raman Spectroscopy, 221–57. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-0942-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ikeda, Katsuyoshi. "Surface Enhanced Raman Scattering." In Compendium of Surface and Interface Analysis, 661–65. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Birke, Ronald L., and John R. Lombardi. "Surface-Enhanced Raman Scattering." In Spectroelectrochemistry, 263–348. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0985-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prochazka, Marek. "Basics of Raman Scattering (RS) Spectroscopy." In Surface-Enhanced Raman Spectroscopy, 7–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prochazka, Marek. "Basics of Surface-Enhanced Raman Scattering (SERS)." In Surface-Enhanced Raman Spectroscopy, 21–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stevenson, Ross, Karen Faulds, and Duncan Graham. "Quantitative DNA Analysis Using Surface-Enhanced Resonance Raman Scattering." In Surface Enhanced Raman Spectroscopy, 241–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Lingxin, Yunqing Wang, Xiuli Fu, and Ling Chen. "Surface-Enhanced Raman Scattering Nanoprobes." In SpringerBriefs in Molecular Science, 75–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43624-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chan, C. Y., J. Li, H. C. Ong, J. B. Xu, and Mary M. Y. Waye. "Angle-Resolved Surface-Enhanced Raman Scattering." In Raman Spectroscopy for Nanomaterials Characterization, 1–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20620-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choo, Jaebum. "Biosensors Using Surface-Enhanced Raman Scattering." In Encyclopedia of Microfluidics and Nanofluidics, 173–78. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tian, Limei, and Srikanth Singamaneni. "Surface-Enhanced Raman Scattering-Based Bioimaging." In Nanotechnology for Biomedical Imaging and Diagnostics, 325–46. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118873151.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Surface-enhanced Raman scattering"

1

Kahraman, Mehmet, Ilknur Sur, Mustafa Culha, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Proteins." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Culha, Mustafa, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Microorganisms." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Weiqing, Yu Liu, Shuping Xu, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering Excited by Propagating Surface Plasmons." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Procházka, M. "Raman and surface-enhanced Raman scattering (SERS) biosensing." In SPIE Optics + Optoelectronics, edited by Francesco Baldini, Jiri Homola, and Robert A. Lieberman. SPIE, 2013. http://dx.doi.org/10.1117/12.2021555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olivo, Malini, Douglas Goh, and U. S. Dinish. "Biomedicine with Surface Enhanced Raman Scattering." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acpc.2013.aw3j.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wabuyele, Musundi B., Fei Yan, Guy D. Griffin, and Tuan Vo-Dinh. "Surface-enhanced Raman scattering molecular nanoprobes." In Biomedical Optics 2005, edited by Tuan Vo-Dinh, Warren S. Grundfest, David A. Benaron, and Gerald E. Cohn. SPIE, 2005. http://dx.doi.org/10.1117/12.604447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lombardi, John R., P. M. Champion, and L. D. Ziegler. "A Unified Theory Of Surface Enhanced Raman Scattering." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potma, Eric O., Alex Fast, and Christropher D. Syme. "Surface-enhanced coherent Raman scattering (Conference Presentation)." In Multiphoton Microscopy in the Biomedical Sciences XVI, edited by Ammasi Periasamy, Peter T. So, and Karsten König. SPIE, 2016. http://dx.doi.org/10.1117/12.2213662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olivo, Malini, Dinish U.s., and Douglas Goh. "Biomedicine with Surface Enhanced Raman Scattering (SERS)." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acp.2013.aw3j.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jones, Robin R., Tim Batten, Brian Smith, Alejandro V. Silhanek, Daniel Wolverson, and Ventsislav K. Valev. "Surface enhanced Raman scattering of crystal violet." In Nonlinear Optics and Applications XII, edited by Anatoly V. Zayats, Mario Bertolotti, and Alexei M. Zheltikov. SPIE, 2021. http://dx.doi.org/10.1117/12.2590035.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Surface-enhanced Raman scattering"

1

Sharma, Shiv K., Anupam K. Misra, Ava C. Dykes, and Lori E. Kamemoto. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada581577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Talley, C., F. Reboredo, J. Chan, and S. Lane. Feasibility of Single Molecule DNA Sequencing using Surface-Enhanced Raman Scattering. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/899105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Hye-Young. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/861629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Driskell, Jeremy Daniel. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays. Applications, fundamentals, and optimization. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/892727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hu, Min, David Fattal, Jingjing Li, Xuema Li, Stanley R. Williams, and Zhiyong Li. Optical Properties of Sub-Wavelength Dielectric Gratings and Their Application for Surface Enhanced Raman Scattering. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada549452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Halas, Naomi, and Joseph Jackson. Detection of Molecular and Biomolecular Species by Surface-Enhanced Raman Scattering: Nanoengineered Substrates for SERS Detection. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Farrell, Mikella E., Dimitra N. Stratis-Cullum, and Paul M. Pellegrino. Characterization of Next Generation Commercial Surface Enhanced Raman Scattering Substrates with a 633- and 785-nm System. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada582433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsai, W. H., and F. J. Boerio. Characterization of Interphases Between PMDA/4-BDAF Polyimides and Silver Substrates Using Surface-Enhanced Raman Scattering and Reflection- Absorption Infrared Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada233531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Camden, Jon P. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1087663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Emmons, Erik D., Jason A. Guicheteau, III Fountain, and Augustus W. Ultraviolet Surface-Enhanced Rama Scattering for Detection Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada568658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography