Academic literature on the topic 'Surface cloud radiative effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface cloud radiative effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Surface cloud radiative effect"
Kalisch, J., and A. Macke. "Radiative budget and cloud radiative effect over the Atlantic from ship based observations." Atmospheric Measurement Techniques Discussions 5, no. 2 (March 1, 2012): 2011–42. http://dx.doi.org/10.5194/amtd-5-2011-2012.
Full textKalisch, J., and A. Macke. "Radiative budget and cloud radiative effect over the Atlantic from ship-based observations." Atmospheric Measurement Techniques 5, no. 10 (October 16, 2012): 2391–401. http://dx.doi.org/10.5194/amt-5-2391-2012.
Full textLacour, A., H. Chepfer, N. B. Miller, M. D. Shupe, V. Noel, X. Fettweis, H. Gallee, J. E. Kay, R. Guzman, and J. Cole. "How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet." Journal of Climate 31, no. 22 (November 2018): 9293–312. http://dx.doi.org/10.1175/jcli-d-18-0023.1.
Full textAlkama, Ramdane, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti. "Clouds damp the radiative impacts of polar sea ice loss." Cryosphere 14, no. 8 (August 21, 2020): 2673–86. http://dx.doi.org/10.5194/tc-14-2673-2020.
Full textStapf, Johannes, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch. "Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions." Atmospheric Chemistry and Physics 20, no. 16 (August 26, 2020): 9895–914. http://dx.doi.org/10.5194/acp-20-9895-2020.
Full textde Szoeke, Simon P., Sandra Yuter, David Mechem, Chris W. Fairall, Casey D. Burleyson, and Paquita Zuidema. "Observations of Stratocumulus Clouds and Their Effect on the Eastern Pacific Surface Heat Budget along 20°S." Journal of Climate 25, no. 24 (December 15, 2012): 8542–67. http://dx.doi.org/10.1175/jcli-d-11-00618.1.
Full textByrne, Michael P., and Laure Zanna. "Radiative Effects of Clouds and Water Vapor on an Axisymmetric Monsoon." Journal of Climate 33, no. 20 (October 15, 2020): 8789–811. http://dx.doi.org/10.1175/jcli-d-19-0974.1.
Full textBecker, Sebastian, André Ehrlich, Michael Schäfer, and Manfred Wendisch. "Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait." Atmospheric Chemistry and Physics 23, no. 12 (June 23, 2023): 7015–31. http://dx.doi.org/10.5194/acp-23-7015-2023.
Full textHarrop, Bryce E., and Dennis L. Hartmann. "The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm Pool." Journal of Climate 28, no. 21 (October 30, 2015): 8620–33. http://dx.doi.org/10.1175/jcli-d-15-0151.1.
Full textDegünther, M., and R. Meerkötter. "Effect of remote clouds on surface UV irradiance." Annales Geophysicae 18, no. 6 (June 30, 2000): 679–86. http://dx.doi.org/10.1007/s00585-000-0679-5.
Full textDissertations / Theses on the topic "Surface cloud radiative effect"
Arouf, Assia. "Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS173.
Full textClouds play an important role in regulating Earth’s energy budget at the surface. For example, clouds absorb thermal radiation emitted by Earth’s surface and reemit it toward the surface and warming the surface. This can be quantified through surface LongWave (LW) Cloud Radiative Effect (CRE). However, surface LW CRE on a global scale is not well retrieved and its instantaneous and interdecadal variability is poorly known. Indeed, it depends highly on vertical cloud distribution, which is poorly documented globally. In this thesis, we propose to retrieve the surface LW CRE over 13 years (2008 − 2020) at a global scale using Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spaceborne lidar observations. From 1D radiative transfer computations, we establish linear parametrizations between surface LW CRE and cloud properties including cloud altitude. Combining the parametrizations with the cloud observations, we derive two datasets of surface LW CRE, at monthly–2° × 2° gridded scale and instantaneously at full CALIPSO horizontal resolution (90 m cross-track; 330 m along orbit-track). We found that clouds warm the surface by 27.0 W/m2 over the 2008 − 2020 time period at a global scale. Surface LW CRE is particularly important in polar regions such that clouds may have an effect on ice melting. By instantaneously co-locating surface cloud warming and sea ice observations in regions where sea ice varies, we showed that large surface cloud warming values (> 80 W/m2 ) are much more frequent over open water than over sea ice during late Fall. Our results suggest that clouds may delay sea ice freeze-up later into the Fall
Marty, Christoph. "Surface radiation, cloud forcing and greenhouse effect in the Alps /." Zürich, 2000. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13609.
Full textSchäfer, Michael, Eike Bierwirth, André Ehrlich, Evi Jäkel, and Manfred Wendisch. "Three-dimensional radiative effects in Arctic boundary layer clouds above ice edges." Universität Leipzig, 2015. https://ul.qucosa.de/id/qucosa%3A16651.
Full textMit Hilfe flugzeuggetragener abbildender spektraler Beobachtungen wurden 3-D Strahlungseffekte zwischen arktischen Grenzschichtwolken sowie der hochvariablen arktischen Bodenoberfläche identifiziert und quantifiziert. Eine Methode zur Differenzierung von Meereis und offener Wasserflächen, auf Grundlage flugzeuggetragener Messungen der aufwärtsgerichteten Strahldichte im sichtbaren Spektralbereich, während bewölkter Bedingungen wird vorgestellt. Diese Differenzierung zeigt gleichzeitig auf, dass die Strahldichtereduzierung beim Übergang vom Meereis zu den offenen Wasserflächen nicht unmittelbar erfolgt, sondern horizontal geglättet ist. Allgemein verringern Wolken in der Umgebung von Eiskanten die Nadir-Strahldichte über den hellen Eisflächen und erhöhen sie über dunklen Meeresoberflächen. Mit Hilfe von 3-D Strahlungstransferrechnungen wurde dieser Effekt quantifiziert. Die Reichweite dieses Effektes wird sowohl von den Wolken- als auch den Oberflächeneigenschaften beeinflusst. Für eine flache Wolke zwischen 0 und 200 m, so wie sie während der arktischen Feldkampagne Vertical Distribution of Ice in Arctic Clouds (VERDI), 2012 beobachtet werden konnte, führt eine Erhöhung der wolkenoptischen Dicke von tau = 1 zu tau = 10 zu einer Verringerung in deltaL von 600 zu 250 m. Zudem führt eine Erhöhung der Wolkenhöhe und ihrer geometrischen Dicke zu einer Zunahme von deltaL. Anschließend wurde der Einfluss dieser 3-D Strahlungseffekte auf die Ableitungsergebnisse von tau untersucht. Die Aufhellung eines dunkleren Pixels neben der Eiskante führt zu Unsicherheiten von bis zu 90 % bei der Ableitung von . Beim effektiven Radius zu bis zu 30 %. DeltaL ist ein Maß mit Hilfe dessen die Entfernung zur Eiskante bestimmt werden kann, ab welcher die Unsicherheiten bezüglich der 3-D Effekte vernachlässigt werden können.
Viúdez, i. Mora Antoni. "Atmospheric downwelling longwave radiation at the surface during cloudless and overcast conditions. Measurements and modeling." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/31841.
Full textLa radiació infrarroja a l’atmosfera és una component important del balanç energètic del planeta; en estar fortament relacionada amb l’efecte hivernacle influeix de manera remarcable en el clima. En aquest estudi s’avalua la bondat de les estimacions de la irradiància infrarroja incident en superfície (DLR) fetes amb un model unidimensional de transferència radiativa, el Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART), per a condicions de cel serè o bé completament ennuvolat. Els càlculs realitzats amb aquest model han estat comparats amb mesures de pirgeòmetre realitzades en tres emplaçaments a Europa: Girona (NE de la Península Ibèrica), Payerne (a l’est de Suïssa), i Heselbach (a la Selva Negra, Alemanya). Els estudis de sensibilitat fets amb el model de transferència radiativa han mostrat l’especial importància que tenen els perfils atmosfèrics de temperatura i contingut d’aigua en absència de núvols; per cels completament ennuvolats l’estudi de sensibilitat mostra que, a banda dels perfils atmosfèrics esmentats, l’altura de la base dels núvols és molt rellevant. S’ha estimat la DLR per indrets on no es disposava de radiosondatges, substituint-los bé per un radiosondatge proper, o bé per perfils interpolats espacialment en l’anàlisi del model de predicció meteorològica de l’European Centre of Medium-Range Weather Forecast (ECMWF). Els càlculs han estat comparats amb mesures per tots els llocs. Per condicions de cel serè, i quan es disposa de radiosondatge, els càlculs mostren una diferència amb les mesures de -2.7 ± 3.4 Wm-2 (Payerne). Quan no es disposa d’aquests perfils, la diferència entre les modelitzacions i les mesures és de 0.3 ± 9.4 Wm-2 (Girona). Per condicions de cel cobert, quan es disposa del radiosondatge i les propietats dels núvols (derivades a partir d’un algoritme que empra mesures espectrals en infraroig i en la banda de microones en superfície, Selva Negra), els càlculs mostren una diferència amb les mesures de -0.28 ± 2.52 Wm-2. Quan es fan servir els perfils del ECMWF i es fixa el valor de la columna d’aigua líquida i el radi efectiu de les gotes d’aigua (Girona) els càlculs mostren una diferència amb les mesures de 4.0 ± 2.5 Wm-2. També s’ha confirmat per totes les condicions estudiades que les estimacions amb el model de transferència radiativa són notablement millors que les obtingudes amb parametritzacions senzilles de l’emissivitat atmosfèrica.
Spadanuda, Enrica. "Surface cloud radiative forcing from broadband radiation measurements on the Antarctic plateau." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10201/.
Full textLi, Xianming. "The effect of gas-surface interactions on radiative ignition of PMMA." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/15888.
Full textMonteiro, Manuel Conceição Gonçalves. "Forçamento radiativo à superficie e no topo da atmosfera provocado por nuvens sobre a Região de Évora : Cloud radiative forcing to the surface and in the top of the atmosphere provoked for clouds on the region of Évora." Master's thesis, Universidade de Évora, 2004. http://hdl.handle.net/10174/14850.
Full textXie, Yu. "The effect of ice crystal surface roughness on the retrieval of ice cloud microphysical and optical properties." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5970.
Full textVoogt, James Adrian. "Validation of an urban canyon radiation model for nocturnal long-wave radiative fluxes and the effect of surface geometry on cooling in urban canyons." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/27679.
Full textArts, Faculty of
Geography, Department of
Graduate
Galloway, Christopher. "Non-radiative processes and vibrational pumping in surface-enhanced raman scattering : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Physics /." ResearchArchive@Victoria e-Thesis, 2010. http://hdl.handle.net/10063/1244.
Full textBooks on the topic "Surface cloud radiative effect"
R, Frouin, and United States. National Aeronautics and Space Administration., eds. Analysis of long-term cloud cover, radiative fluxes, and sea surface temperature in the eastern tropical Pacific. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textR, Frouin, and United States. National Aeronautics and Space Administration., eds. Analysis of long-term cloud cover, radiative fluxes, and sea surface temperature in the eastern tropical Pacific. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textR, Frouin, and United States. National Aeronautics and Space Administration., eds. Analysis of long-term cloud cover, radiative fluxes, and sea surface temperature in the eastern tropical Pacific. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textAnalysis of long-term cloud cover, radiative fluxes, and sea surface temperature in the eastern tropical Pacific. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textKrishnamurti, T. N., H. S. Bedi, and V. M. Hardiker. An Introduction to Global Spectral Modeling. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195094732.001.0001.
Full textBook chapters on the topic "Surface cloud radiative effect"
Randall, David A., Laura D. Fowler, and Donald A. Dazlich. "Cloud Effects on the Ocean Surface Energy Budget." In Climate Sensitivity to Radiative Perturbations, 239–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61053-0_18.
Full textDajuma, Alima, Siélé Silué, Kehinde O. Ogunjobi, Heike Vogel, Evelyne Touré N’Datchoh, Véronique Yoboué, Arona Diedhiou, and Bernhard Vogel. "Biomass Burning Effects on the Climate over Southern West Africa During the Summer Monsoon." In African Handbook of Climate Change Adaptation, 1515–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_86.
Full textMorcrette, Jean-Jacques. "The Role of Cloud-Radiative Interactions in the Sensitivity of the E.C.M.W.F. Model Climate to Variations in Sea Surface Temperature." In Climate Sensitivity to Radiative Perturbations, 157–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61053-0_12.
Full textDong, Peiming, Wei Han, Wei Li, and Shuanglong Jin. "Assessment of Radiative Effect of Hydrometeors in Rapid Radiative Transfer Model in Support of Satellite Cloud and Precipitation Microwave Data Assimilation." In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III), 337–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43415-5_15.
Full textLiou, K. N. "Radiative Transfer In Clouds." In Radiation and Cloud Processes in the Atmosphere, 255–339. Oxford University PressNew York, NY, 1992. http://dx.doi.org/10.1093/oso/9780195049107.003.0005.
Full textEmanuel, Kerry A. "Stratocumulus And Trade-Cumulus Boundary Layers." In Atmospheric Convection, 421–62. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195066302.003.0013.
Full textLiou, K. N., and Y. Gu. "Radiative Transfer in Cirrus Clouds: Light Scatting and Spectral Information." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0017.
Full textHeymsfield, Andrew J., and Greg M. McFarquhar. "Mid-latitude and Tropical Cirrus: Microphysical Properties." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0008.
Full textStephens, Graeme. "Cirrus, Climate, and Global Change." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0024.
Full textDel Genio, Anthony D. "GCM Simulations of Cirrus for Climate Studies." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0019.
Full textConference papers on the topic "Surface cloud radiative effect"
Ou, S. C., and K. N. Liou. "Remote Sounding of Surface Radiative Fluxes in Cirrus Cloudy Conditions." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/orsa.1995.wb3.
Full textWacker, Stefan, Julian Gröbner, and Laurent Vuilleumier. "Trends in surface radiation and cloud radiative effect over Switzerland in the past 15 years." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). AIP, 2013. http://dx.doi.org/10.1063/1.4804859.
Full textNagaraja Rao, C. R., and Nian Zhang. "Mt. Pinatubo volcanic aerosol effects on the remote sensing of sea surface temperature." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fmm5.
Full textDavies, R. "Comparison of longwave and shortwave cloud effects on equilibrium surface temperature using a radiative-convective model and 12 years of MISR observations." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). AIP, 2013. http://dx.doi.org/10.1063/1.4804871.
Full textBisson, Scott E., and J. E. M. Goldsmith. "Measurements of Daytime and Upper Tropospheric Water Vapor Profiles by Raman Lidar." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/orsa.1995.thb1.
Full textEck, Thomas, and Dennis Dye. "A Simple Method of Estimating Photosynthetically Active Radiation at the Earth's Surface from Satellite." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/orsa.1990.md11.
Full textDev, Soumyabrata, Shilpa Manandhar, Feng Yuan, Yee Hui Lee, and Stefan Winkler. "Cloud radiative effect study using sky camera." In 2017 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2017. http://dx.doi.org/10.1109/usnc-ursi.2017.8074899.
Full textGao, Z. X., J. Yi, J. Sun, Y. L. Wang, and Y. L. Zhang. "Method For Evaluating Three-dimensional Total Dose Effects Based On Structure Surface Cloud Picture." In 2018 International Conference on Radiation Effects of Electronic Devices (ICREED). IEEE, 2018. http://dx.doi.org/10.1109/icreed.2018.8905049.
Full textGiroux, Jean, André Villemaire, and Roger W. Saunders. "A New Airborne Fourier Transform Spectrometer for Meteorological Applications." In Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/fts.1995.ffd4.
Full textCosta, M. J., V. Salgueiro, D. Santos, D. Bortoli, A. M. Silva, and R. Salgado. "Surface cloud radiative forcing in the South of Portugal." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). AIP, 2013. http://dx.doi.org/10.1063/1.4804862.
Full textReports on the topic "Surface cloud radiative effect"
Potter, G. L. The effect of horizontal resolution on cloud radiative forcing in the ECMWF model. PCMDI report No. 22. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/114640.
Full textShomer, Ilan, Louise Wicker, Uzi Merin, and William L. Kerr. Interactions of Cloud Proteins, Pectins and Pectinesterases in Flocculation of Citrus Cloud. United States Department of Agriculture, February 2002. http://dx.doi.org/10.32747/2002.7580669.bard.
Full textWilkowski. L51487 Predict the Interaction of Fracture Toughness and Constraint Effects for Surface Cracked Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1985. http://dx.doi.org/10.55274/r0010596.
Full textWicker, Louise, Ilan Shomer, and Uzi Merin. Membrane Processing of Citrus Extracts: Effects on Pectinesterase Activity and Cloud Stability. United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7568754.bard.
Full textWehr, Tobias, ed. EarthCARE Mission Requirements Document. European Space Agency, November 2006. http://dx.doi.org/10.5270/esa.earthcare-mrd.2006.
Full text