Academic literature on the topic 'Surface chemistry of zwitterion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface chemistry of zwitterion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surface chemistry of zwitterion"

1

Abdullah, Norfadhilatuladha, Norhaniza Yusof, Mohammed Abdullah Dahim, Muhammad Faris Hamid, Lau Woei Jye, Juhana Jaafar, Farhana Aziz, Wan Norhayati Wan Salleh, Ahmad Fauzi Ismail, and Nurasyikin Misdan. "Single-Step Surface Hydrophilization on Ultrafiltration Membrane with Enhanced Antifouling Property for Pome Wastewater Treatment." Separations 10, no. 3 (March 9, 2023): 188. http://dx.doi.org/10.3390/separations10030188.

Full text
Abstract:
High organic materials in palm oil mill effluent (POME) can result in serious water pollution. To date, biological treatment has been used to reduce the environmental risks of these effluents prior of their discharge into water streams. However, the effluents’ dark brownish colour remains as a significant issue that must be addressed, as it affects the overall quality of water. Although membrane technology has been frequently used to address these difficulties, membrane fouling has become a serious limitation in POME treatment. On the other hand, zwitterions with balanced charge groups have received growing interest in the fabrication of antifouling membranes due to their hydrated nature. The development of a simple and efficient covalent bonding technique to improve the stability of zwitterions on membrane surfaces remains a challenge. By grafting and co-depositing polyethylenimine (PEI)-based zwitterion (Z-PEI) with super hydrophilic polydopamine (PDA) on the surface of a commercial polysulfone (PSf) ultrafiltration membrane at ambient temperature, a new zwitterionic surface with a neutral surface charge was created (PDA/Z-PEI). This study aims to investigate the effect of different loading ratios of PDA/Z-PEI (1:1, 1:2, and 1:3) and evaluate their performance on treating brownish coloured anaerobically treated POME (AT-POME). SEM and FTIR analysis showed the successful incorporation of the PDA/Z-PEI membrane while the zwitterionic feature is indicated by zeta potential analysis. Water flux analysis demonstrated that a lower water flux was achieved for M-ZPEI membranes as compared to the PSf and PSf-MDPA membranes, attributed by the tight skin layer of PDA-ZPEI. In the development of a tight hydration layer on the membrane surface by zwitterions, zwitterionic membranes demonstrated excellent antifouling capabilities, particularly PDA/Z-PEI with a loading ratio of (1:2) with a flux recovery ratio of around 84% and colour rejection of 81.75%. Overall, this research contributes to the development of a unique coating with improved stability and antifouling properties by altering the membrane surface in a simple and reliable manner.
APA, Harvard, Vancouver, ISO, and other styles
2

Regev, Clil, Zhongyi Jiang, Roni Kasher, and Yifat Miller. "Distinct Antifouling Mechanisms on Different Chain Densities of Zwitterionic Polymers." Molecules 27, no. 21 (October 31, 2022): 7394. http://dx.doi.org/10.3390/molecules27217394.

Full text
Abstract:
Antifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance. This study introduces two different zwitterionic polymer density surfaces by applying molecular modeling tools. To assess the antifouling performance, we mimic static adsorption test, by placing the foulant model bovine serum albumin (BSA) on the surfaces. Our findings show that not only the density of the polymer chain affect antifouling performance, but also the initial orientation of the BSA on the surface. Moreover, at a high-density surface, the foulant either detaches from the surface or anchor on the surface. At low-density surface, the foulant does not detach from the surface, but either penetrates or anchors on the surface. The anchoring and the penetrating mechanisms are elucidated by the electrostatic interactions between the foulant and the surface. While the positively charged ammonium groups of the polymer play major role in the interactions with the negatively charged amino acids of the BSA, in the penetrating mechanism the ammonium groups play minor role in the interactions with the contact with the foulant. The sulfonate groups of the polymer pull the foulant in the penetrating mechanism. Our work supports the design of a high-density polymer chain surface coating to prevent fouling phenomenon. Our study provides for the first-time insights into the molecular mechanism by probing the interactions between BSA and the zwitterion surface, while testing high- and low-densities polymer chains.
APA, Harvard, Vancouver, ISO, and other styles
3

Chiao, Yu-Hsuan, Arijit Sengupta, Micah Belle Marie Yap Ang, Shu-Ting Chen, Teow Yeit Haan, Jorge Almodovar, Wei-Song Hung, and S. Ranil Wickramasinghe. "Application of Zwitterions in Forward Osmosis: A Short Review." Polymers 13, no. 4 (February 15, 2021): 583. http://dx.doi.org/10.3390/polym13040583.

Full text
Abstract:
Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Bor-Ran, Mo-Yuan Shen, Hsiao-hua Yu, and Yaw-Kuen Li. "Rapid construction of an effective antifouling layer on a Au surface via electrodeposition." Chem. Commun. 50, no. 51 (2014): 6793–96. http://dx.doi.org/10.1039/c4cc01329h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Penfold, Jeffrey, and Robert K. Thomas. "Neutron reflection and the thermodynamics of the air–water interface." Physical Chemistry Chemical Physics 24, no. 15 (2022): 8553–77. http://dx.doi.org/10.1039/d2cp00053a.

Full text
Abstract:
Neutron reflection measures the surface composition of mixtures and quantifies their interactions. The illustration shows the behaviour of an ionic-zwitterion surfactant mixture and a possible configuration of the molecules at the surface.
APA, Harvard, Vancouver, ISO, and other styles
6

Dassonville, Delphine, Thomas Lécuyer, Johanne Seguin, Yohann Corvis, Jianhua Liu, Guanyu Cai, Julia Mouton, Daniel Scherman, Nathalie Mignet, and Cyrille Richard. "Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice." Coatings 13, no. 11 (November 8, 2023): 1913. http://dx.doi.org/10.3390/coatings13111913.

Full text
Abstract:
After excitation in the biological transparency window, chromium-doped zinc gallate nanoparticles (ZGO NPs) emit near-infrared luminescence for more than an hour, allowing long-term imaging to be performed without background autofluorescence. However, these nanoparticles are recognized in just a few minutes by serum proteins and are then trapped in the liver. In this article, we put forth that liver uptake can be delayed when coating the surface of ZGO NPs with zwitterions. We focused on the use of a very small zwitterion molecule of 330 Da derived from sulfobetaine silane (SBS) and its grafting in one step and in water onto zinc gallate nanoparticles, and we compared the colloidal stability, the in vitro interactions with serum proteins, and the biodistribution in mice with PEGylated ZGO NPs (5000 Da) prepared in two steps in organic solvent. In vitro quantification of serum protein adsorption suggests that the similarity between the sulfobetaine and the cell membrane is enough to reduce protein adsorption as much as a PEGylation, despite the difference in coating thickness and molecular weight. This study has also proved that a combination of good protein repulsion and a smaller size compared to PEGylated NPs allows similar circulation times to be obtained in mice with zwitterionic or PEG coatings. Therefore, its use could offer new opportunities for further in vivo application of functionalized ZGO derivative NPs.
APA, Harvard, Vancouver, ISO, and other styles
7

Nikam, Shantanu P., Peiru Chen, Karissa Nettleton, Yen-Hao Hsu, and Matthew L. Becker. "Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications." Biomacromolecules 21, no. 7 (May 27, 2020): 2714–25. http://dx.doi.org/10.1021/acs.biomac.0c00456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mondini, Sara, Marianna Leonzino, Carmelo Drago, Anna M. Ferretti, Sandro Usseglio, Daniela Maggioni, Paolo Tornese, Bice Chini, and Alessandro Ponti. "Zwitterion-Coated Iron Oxide Nanoparticles: Surface Chemistry and Intracellular Uptake by Hepatocarcinoma (HepG2) Cells." Langmuir 31, no. 26 (June 23, 2015): 7381–90. http://dx.doi.org/10.1021/acs.langmuir.5b01496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kravchenko, A. A., E. M. Demianenko, A. G. Grebenyuk, M. I. Terets, M. G. Portna, and V. V. Lobanov. "Quantum chemical study on the interaction of arginine with silica surface." Himia, Fizika ta Tehnologia Poverhni 12, no. 4 (December 30, 2021): 358–64. http://dx.doi.org/10.15407/hftp12.04.358.

Full text
Abstract:
The structure and energy characteristics of structures formed during arginine adsorption on silica surface from aqueous solution were studied by the density functional theory (B3LYP) method using a valence-split basis set 6-31++G(d,p) within the continuous solvent model (PCM) and supermolecular approximation. The equilibrium structural and energy parameters of the protonated arginine molecule in the gas phase dependent on the location of the hydrogen atom are considered including those of two possible zwitterions. The structure of the arginine ion Н2А+, which is formed when a proton attaches to a molecule or zwitterion of a given amino acid, has been elucidated. To determine the deprotonation constant of the carboxyl group in an acidic medium, the complexes of the arginine molecule (AH32+) in the state with undissociated and deprotonated carboxyl groups are considered. The simulation of the acid medium was performed by taking into account the interaction with two hydrated HCl ion pairs, which provided the protonation of the a-amino group and the nitrogen atom of amino group within the guanidine group. In the study on the interaction of an arginine molecule with silica surface in an aqueous medium, complexes containing a Si8O12(OH)7O– ion with a deprotonated silanol group, six water molecules, and an arginine molecule with a deprotonated carboxyl group were considered. It has been found that the arginine molecule is most likely to be adsorbed on slica surface with formation of hydrogen bonds between the hydrogen atoms of the a-amino group and the oxygen atom of the deprotonated silanol group. In this case, the formation of a hydrogen bond between the oxygen atom of the carboxyl group and the hydrogen atom of the neighboring silanol group is possible. Slightly less likely is adsorption of arginine molecules due to interaction of the guanidine group with silanol groups of the surface. According to the calculated data, the adsorption of the zwitterionic form of the arginine molecule from the aqueous solution is equally likely to occur due to interaction of silanol groups of silica surface with both the carboxyl group and the guanidine group.
APA, Harvard, Vancouver, ISO, and other styles
10

Costa, Paolo, Iris Trosien, Joel Mieres-Perez, and Wolfram Sander. "Isolation of an Antiaromatic Singlet Cyclopentadienyl Zwitterion." Journal of the American Chemical Society 139, no. 37 (September 11, 2017): 13024–30. http://dx.doi.org/10.1021/jacs.7b05807.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Surface chemistry of zwitterion"

1

Ghisolfi, Alessio. "Applications of functionnal diphosphines quinonoid zwietterions to coordination chemistry and surface functionalization." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF016/document.

Full text
Abstract:
Le but de ce travail de thèse était de développer de nouvelles familles de ligands polyfonctionnels pour étudier, dans un premier temps, leur chimie de coordination vis-à-vis de métaux de transition et, dans un second temps, en fonction des espèces formées, leurs propriétés physiques (magnétiques par exemple) et/ou catalytiques. L’évaluation de leur potentiel pour la formation de nouveaux matériaux ou la fonctionnalisation de supports métalliques faisait également partie intégrante des objectifs de cette thèse. De ce fait, chaque ligand a été fonctionnalisé avec des groupements adaptés à l’ancrage sur surfaces, comme des fonctions zwitterioniques ou des thio-éthers
The aim of this thesis was to develop new families of polyfunctional ligands to study their coordination chemistry towards transition metals and, depending on the products formed, to investigate their physical (e.g. magnetic) and / or catalytic properties. The evaluation of their potential for the formation of new materials as well as for the functionalization of metal surfaces was also part of the objective of this thesis. Therefore, each ligand has been functionalized with groups suitable for the anchoring on metallic surfaces, such as zwitterionic or thioethers moieties
APA, Harvard, Vancouver, ISO, and other styles
2

Pu, Yuzhou. "Synthesis and functionalization of hybrid plasmon-semiconductor nanoparticles for cancer phototherapy." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS031.

Full text
Abstract:
Les nanoparticules d'or possèdent une grande section efficace d'absorption de la lumière grâce à leur effet de résonance plasmonique de surface localisée. Cela en fait des photosensibilisateurs prometteurs pour diverses applications biomédicales. En particulier, les nano-bâtonnets d'or (AuNRs) peuvent absorber efficacement la lumière dans le proche infrarouge (NIR), la fenêtre optimale pour la pénétration de la lumière dans les tissus. Par conséquent, les AuNRs présentent un potentiel important comme photosensibilisateurs.Lorsque les AuNRs absorbent la lumière, ils génèrent des électrons « chauds », à haute énergie au sein de leur structure. Ces électrons chauds peuvent convertir directement l'énergie absorbée en chaleur, ce qui entraîne une augmentation de la température dans l'environnement. Cet effet de chauffage localisé peut tuer efficacement les cellules cancéreuses. Alternativement, les électrons chauds peuvent réagir avec l'eau ou les molécules de dioxygène, ce qui produit des espèces réactives d’oxygène cytotoxiques. Ces espèces peuvent induire la mort cellulaire programmée. Cependant, les défis actuels des photothérapies réalisées par des AuNRs concernent la faible efficacité de la conversion et de l'utilisation de l'énergie plasmonique. Une solution possible pour relever ce défi consiste à combiner les AuNRs avec des semi-conducteurs. Cette combinaison permet le transfert de l'énergie lumineuse absorbée par les AuNR vers le semi-conducteur, soit par injection d'électrons chauds, soit par transfert d'énergie.Nous avons synthétisé des nanoparticules hybrides en forme d'haltères composées d’AuNR et de dioxyde de titane (TiO2) appelées AuNR/TiO2. Dans cette hétérostructure, les électrons chauds générés au sein des AuNR sont injectés dans la bande de conduction du TiO2. Ce transfert permet aux électrons chauds d'avoir une durée de vie prolongée, et de réagir efficacement avec les molécules de dioxygène dans l'environnement pour générer des radicaux hydroxyles. Pour assurer la stabilité de ces nanoparticules dans un environnement physiologique, nous avons fonctionnalisé les nanoparticules hybrides AuNR/TiO2 avec des ligands polymères de polyéthylène glycol-phosphonate. La densité de ces ligands polymères à la surface des nanoparticules joue un rôle crucial dans l'obtention d'une photoactivité optimale. Nous avons démontré l'efficacité de ces nanoparticules hybrides pour la photothérapie in vitro sur des cellules cancéreuses en les irradiant dans le proche infrarouge.De plus, nous avons synthétisé des nanoparticules hybrides AuNRs avec des matériaux semi-conducteurs tels que le sulfure d'argent et le sulfure de cuivre. Dans ces systèmes, l'énergie plasmonique présente dans les AuNRs peut être transférée aux matériaux semi-conducteurs. Ce processus conduit à la création d'excitons dans les semi-conducteurs, qui peuvent ensuite générer des espèces réactives d'oxygène. Pour améliorer l'efficacité de ce transfert d'énergie et empêcher une recombinaison indésirable entre les électrons et les trous excités, nous avons introduit une couche de silice isolante à l'interface entre l'or et le semi-conducteur. Nous avons également évalué la photoactivité de ces nanoparticules hybrides sous illumination infrarouge.Enfin, l'efficacité thérapeutique des nanoparticules est souvent compromise par une mauvaise biodistribution, la majorité des nanoparticules injectées étant captées par les macrophages. Pour relever ce défi, nous avons testé différents polymères zwitterioniques pour fonctionnaliser différentes nanoparticules inorganiques et éviter leur capture par les macrophages. Leurs interactions avec les protéines et les macrophages ont été étudiées in vitro. De plus, nous avons mené des études pharmacocinétiques sur des AuNRs fonctionnalisées avec différents types de polyzwitterions, afin d’évaluer leur temps de circulation in vivo
Gold nanoparticles possess high light absorption cross sections due to their localized surface plasmon resonance, making them promising photosensitizers for various biomedical applications. Among them, gold nanorods (AuNRs), can effectively absorb light in the near-infrared range, which is the optimal window for light penetration into the human body. As a result, AuNRs hold significant potential as photosensitizers for phototherapy.When AuNRs absorb light, they generate high-energy “hot” electrons within their structure. These hot electrons can directly convert the absorbed energy into heat, leading to a temperature increase in the surrounding environment. This localized heating can effectively kill cancer cells. Alternatively, hot electrons can react with water or dioxygen in the environment, generating cytotoxic reactive oxygen species. These reactive oxygen species can induce programmed cell death. However, current challenges in phototherapies involving AuNRs revolve around the low efficiency of plasmonic energy conversion and utilization, limiting their further clinical trials. One possible solution to address this challenge is to combine AuNRs with specific semiconductors. This combination allows for the transfer of light energy absorbed by AuNRs to the semiconductor material, either through hot electron injection or energy transfer mechanisms.We synthesized hybrid dumbbell-shaped nanoparticles consisting of gold nanorods (AuNRs) and titanium dioxide (TiO2), AuNR/TiO2. In this heterostructure, hot electrons generated within the AuNRs could be directly injected into the conduction band of TiO2. This transfer extends the lifetime of energetic electrons, enabling them to effectively react with dioxygen in the environment and generate hydroxyl radicals. To ensure the stability of these nanoparticles in a physiological environment, we functionalized them with polyethylene glycol-phosphonate polymer ligands. The density of these polymer ligands on the nanoparticle surface plays a crucial role in achieving optimal photoactivity. We then evaluated the potential of these hybrid nanoparticles for photodynamic therapy in vitro on cancer cells after irradiation with near-infrared (NIR) light.We also explored the combination of AuNRs with semiconductor materials such as silver sulfide and copper sulfide, resulting in the formation of core-shell hybrid nanostructures. In these hybrid systems, the plasmon energy present in the AuNRs is transferred to the semiconductor materials through dipole-dipole interactions. This energy transfer process leads to the creation of exciton pairs within the semiconductors, which can further generate reactive oxygen species. To enhance the efficiency of this energy transfer and prevent undesired recombination between excited electrons and holes, we introduced an insulating silica layer at the interface between the gold and semiconductor components. We also assessed the photoactivity of these hybrid nanoparticles under continuous-wave NIR illumination.Lastly, the therapeutic efficacy of nanoparticles is often compromised by their poor biodistribution, as the majority of injected nanoparticles are recognized and captured by macrophages. To address this challenge, we tested the ability of different zwitterionic polymer ligands to avoid nanoparticle capture by macrophages. Semiconductor quantum dots, iron oxide and gold nanoparticles decorated with polyzwitterions were synthesized. Their interactions with proteins and macrophages were investigated in vitro to assess their potential for improved biocompatibility and reduced macrophage uptake. Furthermore, we conducted pharmacokinetic studies on AuNRs functionalized with different types of polyzwitterions. These studies aimed to evaluate the behavior of these functionalized nanoparticles within the body and gain insights into their distribution and clearance pathways
APA, Harvard, Vancouver, ISO, and other styles
3

Dragota, Simona Olimpia. "Contributions to the chemistry of higher-coordinate Silicon synthesis, structure, and stereodynamics of new Silicon(IV) complexes with SiO2N2C, SiO4C, or SiO6 skeletons /." Doctoral thesis, [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978743571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bishop, Alexander James. "Actinide surface chemistry." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54193/.

Full text
Abstract:
The surface reactivity of thorium and uranium, and how this links to the 5f electrons, has been investigated under UHV conditions using X-ray photoelectron spectroscopy (XPS), ultra violet photoelectron spectroscopy (UPS), and inverse photoemission spectroscopy (IPES).  Water and ammonia adsorption on a polycrystalline thorium surface has been investigated at 100 and 298 K.  Water adsorbs and dissociates upon the surface, leading to the formation of oxide and hydroxide species at 298 K, and oxide, hydroxide, and physisorbed water at 100 K. The surfaces after adsorption at both temperatures proved to be unstable when exposed to the low energy electron gun utilised in IPES.  Ammonia adsorbs and dissociates upon the surface, leading to the formation of nitride and NH2 species at 298 K, and nitride, NH2, and physisorbed ammonia at 100 K.  Upon reaction only the mononitride ThN is formed, the metallic nature of which was confirmed by UPS and IPES.  The surface was unstable under the low energy electron gun utilised in IPES, with the ThN species being converted to the non-metallic Th3N4.  Water and ammonia adsorption on a polycrystalline uranium surface has also been investigated at 100 and 298 K.  Water adsorbs and dissociates upon the surface, leading to the formation of oxide and hydroxide species at 298 K, and oxide, hydroxide, and physisorbed water at 100 K.  The rate of reaction of water with uranium is substantially reduced in the presence of residual oxygen on the surface.  The small band-gap of semi-conducting UO2 can be observed directly with UPS and IPES.  Ammonia adsorbs and dissociates upon the surface, leading to the formation of nitride and NH2 species at 100 and 298 K.
APA, Harvard, Vancouver, ISO, and other styles
5

Cooper, Philip Andrew. "Surface chemistry of foams." Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, Ken D. "The surface chemistry of beryllium." Thesis, University of Salford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sirbu, Elena. "Surface chemistry of cellulose nanocrystals." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33308/.

Full text
Abstract:
Chemical surface modification of cellulose nanocrystals has had a fast development and increased interest from the scientific community as cellulose is the most abundantly available renewable polymer with many advantages such as nanoscale dimensions, high specific strength and modulus, high surface area, unique optical properties and the extraordinary modification potential to increase the application field. This thesis is aimed at expanding and improving upon the current knowledge in order to unlock new applications. Four esterification techniques were applied to the formation of cellulose nanocrystal esters of acrylic acid and methacrylic acid. The degree of surface substitution reached two to three surface hydroxyl groups (the maximum number) available for functionalization and this degree of substitution is very much dependent on the chosen esterification methodology. Two new fluorescently modified cellulose esters based on carbazole-9-yl-acetic acid and coumarin-3-carboxylic acid were synthesised using p-toluenesulfonyl chloride/pyridine and carbodiimide esterifications methods. Absorption and fluorescent properties were also measured and showed fluorescence proportional to the extent of surface functionalization. The maximum theoretically attainable degree of substitution could be reached while still maintaining the crystal structure of cellulose. Cationic cellulose nanocrystals were produced with a high positive surface charge when compared with the literature. The synthesis procedure was attempted in two steps and in a single step. The degree of modification for pyridinium acetate cellulose and methyl imidazolium acetate cellulose was found to depend significantly on the selected pathway. The cationic nature of the modifications was verified using zeta potential measurements and through adsorption of an anion dye. Synthesised cellulose acrylates and methacrylates were used in Thiol-Ene click reactions in which very mild and environmentally friendly reaction conditions proved to work from 10 min reaction times. Four different thiols were added, with and without hexylamine catalyst. In addition, an amidine functionalised cellulose nanocrystal was synthesised based on previously click-modified cellulose in a 2-hour reaction. Furthermore, the switchable behaviour of the synthesised nanoparticles was demonstrated by reverse bubbling with CO2 and Ar.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Jun. "Surface Raman spectroscopy : instrumentation and application in surface and corrosion sciences /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487948807588245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Jian Ren. "The surface chemistry of emulsion breakdown." Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McElroy, Daniel. "Grain surface chemistry in molecular clouds." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602462.

Full text
Abstract:
This work ia a study of chemistry in molecular clouds. I begin by describing the improvements made to gas phase chemical reaction data in the recent release of the UMIST database for astrochemistry (Rate 12). Improvements to the reaction network include the addition of anions, new reaction rate coefficient and branching rate measurements across all reactions types and newly calculated photodissociation and photoionisation rates.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Surface chemistry of zwitterion"

1

Surface chemistry. Oxford: Oxford University Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Inc, ebrary, ed. Surface chemistry. Jaipur, India: Oxford Book Co., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morton, Rosoff, ed. Nano-surface chemistry. New York: Marcel Dekker, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nano-Surface Chemistry. New York: Marcel Dekker, Inc., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

V, Churaev N., Muller V. M, and Kitchener J. A, eds. Surface forces. New York: Consultants Bureau, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

I, Prigogine, and Rice Stuart Alan 1932-, eds. Surface properties. New York: John Wiley and Sons, Inc., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carley, Albert F., Philip R. Davies, Graham J. Hutchings, and Michael S. Spencer, eds. Surface Chemistry and Catalysis. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6637-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D, Shchukin E., ed. Colloid and surface chemistry. Amsterdam: Elsevier, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Surface and colloid chemistry. Lexington, KY]: [CreateSpace Independent Publishing Platform], 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rideal, Eric Keightley. Introduction to surface chemistry. [Place of publication not identified]: Nash Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Surface chemistry of zwitterion"

1

Shaabani, Ahmad, Afshin Sarvary, and Ali Maleki. "Zwitterions and Zwitterion-Trapping Agents in Isocyanide Chemistry." In Isocyanide Chemistry, 263–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652532.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bare, Simon R., and G. A. Somorjai. "Surface Chemistry." In Photocatalysis and Environment, 63–189. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3015-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Belsey, N. A., A. G. Shard, and C. Minelli. "Surface Chemistry." In Nanomaterial Characterization, 153–78. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118753460.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chesters, Michael A., and Andrew B. Horn. "Surface Chemistry." In Low-Temperature Chemistry of the Atmosphere, 219–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79063-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vidal, Alain M., and Eugène Papirer. "Surface Chemistry and Surface Energy of Silicas." In Advances in Chemistry, 245–55. Washington DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0234.ch012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caselli, P., T. Stantcheva, and E. Herbst. "Grain Surface Chemistry." In Springer Proceedings in Physics, 479–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-18902-9_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koel, B. E., and G. A. Somorjai. "Surface Structural Chemistry." In Catalysis, 159–218. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-93281-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schröder, H., and K. L. Kompa. "Laser Surface Chemistry." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 693–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Persson, Per O. Å. "MXene Surface Chemistry." In 2D Metal Carbides and Nitrides (MXenes), 125–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19026-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morrison, Glenn C. "Indoor Surface Chemistry." In Handbook of Indoor Air Quality, 885–901. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7680-2_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Surface chemistry of zwitterion"

1

Adila, Ahmed S., Mahmoud Aboushanab, Ahmed Fathy, and Muhammad Arif. "An Experimental Investigation of Surface Chemistry of Rocks in the Presence of Surfactants." In GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219143-ms.

Full text
Abstract:
Abstract Surfactant flooding is a well-known chemical enhanced oil recovery (cEOR) technique. However, surfactant surface chemistry and the associated interactions with rock surfaces are complex and have not been fully investigated. Here, we experimentally investigate the surface chemistry of 15 rock surfaces (10 carbonate and 5 sandstones) upon interaction with different types of surfactants, including cationic, anionic, non-ionic, and zwitterionic surfactants at different concentrations (before, at, and after the critical micelle concentration, CMC). The rock samples were examined using Scanning Electron Microscopy (SEM) to investigate their structure and surface morphology. To understand the interactions at the surfactant-mineral interface and surfactant behavior, the zeta potential measurements of surfactant-brine-rock emulsions were performed, while surface chemical functional groups were identified by Fourier-transform infrared (FTIR) spectroscopy. The zeta potential results show that both anionic (SDS) and cationic (CTAB) surfactants depict better stability, in carbonates and sandstones, compared to the non-ionic (Triton X-100) and zwitterionic (3- (N, N-Dimethylmyristylammonio) surfactants, which is due to the nature of the charge of each surfactant. Also, the FITR results indicate the existence of different chemical bonds and functional groups at different concentrations for each surfactant type, and the magnitude of these bonds differs as a function of rock type and mineralogy. For instance, the rock samples treated with CTAB cationic surfactant reveal the presence of C-O, Mg-C, and Ca-C groups at all concentrations. However, despite being present at all concentrations, these responses show different magnitudes at different surfactant concentrations. The results of this study provide valuable data set to understand the surfactant surface chemistry interactions with different carbonate and sandstone rock surfaces and thus have direct implications for chemical enhanced oil recovery.
APA, Harvard, Vancouver, ISO, and other styles
2

Child, Craig M., Michelle Foster, J. E. Ivanecky III, Scott S. Perry, and Alan Campion. "Surface Raman spectroscopy as a probe of surface chemistry." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Janice M. Hicks, Wilson Ho, and Hai-Lung Dai. SPIE, 1995. http://dx.doi.org/10.1117/12.221481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nemickas, Gedvinas, Deividas Čereška, Gabrielius Kontenis, Arnas Žemaitis, Greta Merkininkaite, Simas Šakirzanovas, and Linas Jonušauskas. "Femtosecond surface structuring: wettability, friction control and surface chemistry." In Laser-based Micro- and Nanoprocessing XV, edited by Udo Klotzbach, Rainer Kling, and Akira Watanabe. SPIE, 2021. http://dx.doi.org/10.1117/12.2578355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Molchanova (Shumakova), A. N., A. V. Kashkovsky, and Ye A. Bondar. "A detailed DSMC surface chemistry model." In PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4902584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kimball, Gregory M., Nathan S. Lewis, and Harry A. Atwater. "Synthesis and surface chemistry of Zn3P2." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jianquan, and Thomas Litzinger. "Near Surface Chemistry of BTTN/GAP." In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nasr-El-Din, H. A., M. B. Al-Otaibi, A. M. Al-Aamri, and N. Ginest. "Surface Tension of Completion Brines." In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93421-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pemberton, Jeanne E. "Surface Raman Scattering as a Probe of Metal Surface Chemistry." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/laca.1992.thb1.

Full text
Abstract:
Raman scattering is an attractive probe of surface and interfacial chemistry at metals due to the high degree of molecular specificity inherent in the results. One aspect of Raman scattering that enhances its utility for the study of metal surfaces is the ability to deduce orientational information about molecules at these metal surfaces from the presence of oriented electric fields at these surfaces with which selective vibrational modes can couple. These "surface selection rules" have been both theoretically described and experimentally validated for a variety of metal surfaces. Given the wealth of information available from such studies, potential applications for surface Raman scattering span the range from electrochemical to catalytic systems. Thus, considerable effort has been expended in an attempt to develop Raman scattering for the study of surface and interfacial phenomena. These efforts have largely been focused on overcoming problems attendant to sensitivity and selectivity for the interface in the presence of the bulk environment.
APA, Harvard, Vancouver, ISO, and other styles
9

Jun, Y., V. Boiadjiev, R. Major, and Xiao-Yang Zhu. "Novel chemistry for surface engineering in MEMS." In Micromachining and Microfabrication, edited by Yuli Vladimirsky and Philip J. Coane. SPIE, 2000. http://dx.doi.org/10.1117/12.395598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brady, B., and L. Martin. "Modeling multiphase atmospheric chemistry with SURFACE CHEMKIN." In Space Programs and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4339.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Surface chemistry of zwitterion"

1

Husson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.

Full text
Abstract:
This research project introduced a novel membrane coating strategy to combat biofouling, which is a major problem for the membrane-based treatment of agricultural and municipal wastewaters. The novelty of the strategy is that the membrane coatings have the unique ability to switch reversibly between passive (antifouling) and active (antimicrobial) fouling control mechanisms. This dual-mode approach differs fundamentally from other coating strategies that rely solely on one mode of fouling control. The research project had two complementary objectives: (1) preparation, characterization, and testing of dual-mode polymer nanolayers on planar surfaces and (2) evaluation of these nanolayers as membrane modifiers. The first objective was designed to provide a fundamental understanding of how polymer nanolayer chemistry and structure affect bacterial deposition and to demonstrate the reversibility of chemical switching. The second objective, which focused on membrane development, characterization, and testing, was designed to demonstrate methods for the production of water treatment membranes that couple passive and active biofouling control mechanisms. Both objectives were attained through synergistic collaboration among the three research groups. Using planar silicon and glass surfaces, we demonstrated using infrared spectroscopy that this new polymer coating can switch reversibly between the anti-fouling, zwitterion mode and an anti-microbial, quaternary amine mode. We showed that switching could be done more than 50 times without loss of activity and that the kinetics for switching from a low fouling zwitterion surface to an antimicrobial quaternary amine surface is practical for use. While a low pH was required for switching in the original polymer, we illustrated that by slightly altering the chemistry, it is possible to adjust the pH at which the switching occurs. A method was developed for applying the new zwitterionic surface chemistry onto polyethersulfone (PES) ultrafiltration membranes. Bacteria deposition studies showed that the new chemistry performed better than other common anti-fouling chemistries. Biofilm studies showed that PESultrafiltration membranes coated with the new chemistry accumulated half the biomass volume as unmodified membranes. Biofilm studies also showed that PES membranes coated with the new chemistry in the anti-microbial mode attained higher biofilm mortality than PES membranes coated with a common, non-switchablezwitterionic polymer. Results from our research are expected to improve membrane performance for the purification of wastewaters prior to use in irrigation. Since reduction in flux due to biofouling is one of the largest costs associated with membrane processes in water treatment, using dual-mode nanolayer coatings that switch between passive and active control of biofouling and enable detachment of attached biofoulants would have significant economic and societal impacts. Specifically, this research program developed and tested advanced ultrafiltration membranes for the treatment of wastewaters. Such membranes could find use in membrane bioreactors treating municipal wastewater, a slightly upgraded version of what presently is used in Israel for irrigation. They also may find use for pretreatment of agricultural wastewaters, e.g., rendering facility wastewater, prior to reverse osmosis for desalination. The need to desalinate such impaired waters water for unlimited agricultural use is likely in the near future.
APA, Harvard, Vancouver, ISO, and other styles
2

Waltenburg, Hanne N., John T. Yates, and Jr. Surface Chemistry of Silicon. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada288893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wei, Jian, V. S. Smentkowski, Jr Yates, and J. T. Selected Bibliography II-Diamond Surface Chemistry. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada273518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duncan, Michael A. Architecture and Surface Chemistry of Compound Nanoclusters. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada567134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carroll, S. A., W. L. Bourcier, and B. L. Phillips. Surface chemistry and durability of borosilicate glass. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10124135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Gonghu, and Christine Caputo. Surface Molecular Chemistry in Solar Fuel Research. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sena, Victoria, Janie Star, and Daniel Kelly. Surface Chemistry Analysis of Additively Manufactured Titanium. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1867165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sholl, David. Quantum Chemistry for Surface Segregation in Metal Alloys. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1109080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fedin, Igor. Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1599021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fedin, Igor. Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1601369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography