Academic literature on the topic 'SURF FEATURES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SURF FEATURES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SURF FEATURES"
Wang, Yin Tien, Chen Tung Chi, and Ying Chieh Feng. "Robot Simultaneous Localization and Mapping Using Speeded-Up Robust Features." Applied Mechanics and Materials 284-287 (January 2013): 2142–46. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.2142.
Full textWang, Yin-Tien, and Guan-Yu Lin. "Improvement of speeded-up robust features for robot visual simultaneous localization and mapping." Robotica 32, no. 4 (September 2, 2013): 533–49. http://dx.doi.org/10.1017/s0263574713000830.
Full textBay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. "Speeded-Up Robust Features (SURF)." Computer Vision and Image Understanding 110, no. 3 (June 2008): 346–59. http://dx.doi.org/10.1016/j.cviu.2007.09.014.
Full textPandey, Ramesh Chand, Sanjay Kumar Singh, and K. K. Shukla. "Passive Copy- Move Forgery Detection Using Speed-Up Robust Features, Histogram Oriented Gradients and Scale Invariant Feature Transform." International Journal of System Dynamics Applications 4, no. 3 (July 2015): 70–89. http://dx.doi.org/10.4018/ijsda.2015070104.
Full text.M, Suresha, and Sandeep. "Recognition of Birds in Blurred and Illumination Images by Local Features." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 7 (July 30, 2017): 243. http://dx.doi.org/10.23956/ijarcsse/v7i7/0128.
Full textShukla, Tuhin, Nishchol Mishra, and Sanjeev Sharma. "Automatic Image Annotation using SURF Features." International Journal of Computer Applications 68, no. 4 (April 18, 2013): 17–24. http://dx.doi.org/10.5120/11567-6868.
Full textTabuse, Masayoshi, Toshiki Kitaoka, and Dai Nakai. "Outdoor autonomous navigation using SURF features." Artificial Life and Robotics 16, no. 3 (December 2011): 356–60. http://dx.doi.org/10.1007/s10015-011-0950-8.
Full textPuyda, Volodymyr. "Surf Features Extraction in a Computer Vision System." Advances in Cyber-Physical Systems 2, no. 1 (March 28, 2017): 29–31. http://dx.doi.org/10.23939/acps2017.01.029.
Full textJhan, J. P., and J. Y. Rau. "A NORMALIZED SURF FOR MULTISPECTRAL IMAGE MATCHING AND BAND CO-REGISTRATION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (June 4, 2019): 393–99. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-393-2019.
Full textJing Zhao, Jing Zhao. "Sports Motion Feature Extraction and Recognition Based on a Modified Histogram of Oriented Gradients with Speeded Up Robust Features." 電腦學刊 33, no. 1 (February 2022): 063–70. http://dx.doi.org/10.53106/199115992022023301007.
Full textDissertations / Theses on the topic "SURF FEATURES"
Jurgensen, Sean M. "The rotated speeded-up robust features algorithm (R-SURF)." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42653.
Full textIncludes supplemental materials
Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features (SURF) algorithm are examined in this research. We evaluate the SURF algorithm to identify possible areas for improvement in the performance. A proposed alternative to the SURF detector is proposed called rotated SURF (R-SURF). This method utilizes filters that are rotated 45 degrees counter-clockwise, and this modification is tested with standard detector testing methods against the regular SURF detector. Performance testing shows that the R-SURF outperforms the regular SURF detector when subject to image blurring, illumination changes and compression. Based on the testing results, the R-SURF detector outperforms regular SURF slightly when subjected to affine (viewpoint) changes. For image scale and rotation transformations, R-SURF outperforms for very small transformation values, but the regular SURF algorithm performs better for larger variations. The application of this research in the larger recognition process is also discussed.
Brykt, Andreas. "A testbed for distributed detection ofkeypoints and extraction of descriptors forthe Speeded-Up-Robust-Features (SURF)algorithm." Thesis, KTH, Kommunikationsnät, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141475.
Full textMedeiros, Petr?cio Ricardo Tavares de. "Multifoveamento em multirresolu??o com f?veas m?veis." PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA EL?TRICA E DE COMPUTA??O, 2016. https://repositorio.ufrn.br/jspui/handle/123456789/22258.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-15T22:29:35Z (GMT) No. of bitstreams: 1 PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5)
Made available in DSpace on 2017-03-15T22:29:35Z (GMT). No. of bitstreams: 1 PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5) Previous issue date: 2016-07-20
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES)
O foveamento ? uma t?cnica de vis?o computacional capaz de promover a redu??o da informa??o visual atrav?s de uma transforma??o da imagem, em dom?nio espacial, para o dom?nio de multirresolu??o. Entretanto, esta t?cnica se limita a uma ?nica f?vea com mobilidade dependente do contexto. Neste trabalho s?o propostas a defini??o e a constru??o de um modelo multifoveado denominado MMMF (multifoveamento em multirresolu??o com f?veas m?veis) baseado em um modelo anterior denominado MMF (multirresolu??o com f?vea m?vel). Em um contexto de m?ltiplas f?veas, a aplica??o de v?rias estruturas MMF, uma para cada f?vea, resulta em um consider?vel aumento de processamento, uma vez que h? interse??es entre regi?es de estruturas distintas, as quais s?o processadas m?ltiplas vezes. Dadas as estruturas de f?veas MMF, propomos um algoritmo para obter regi?es disjuntas que devem ser processadas, evitando regi?es redundantes e, portanto, reduzindo o tempo de processamento. Experimentos s?o propostos para validar o modelo e verificar a sua aplicabilidade no contexto de vis?o computacional. Resultados demonstram o ganho em termos de tempo de processamento do modelo proposto em rela??o ao uso de m?ltiplas f?veas do modelo MMF.
Foveation is a computer vision technique for visual information reduction obtained by applying an image transformation in the spatial domain to the multiresolution domain. However, this technique is limited to a single fovea context-dependent mobility. This work proposes the definition and the construction of a multifoveated model called MMMF (Multiresolution Multifoveation using Mobile Foveae) based on an earlier model called MMF (Multiresolution with Moving Fovea). In the context of multiple foveae, the application of various MMF structures, one for each fovea, results in an increase in processing time, since there are intersections between regions of different structures, which are processed multiple times. Given MMF structures, an algorithm in order to get disjoint regions which are to be processed is proposed, avoiding redundant regions and thereby reducing the processing time. Experiments are proposed to validate the model and to verify its applicability in the computer vision context. Results show the gain in processing time of the proposed model compared to the use of multiple MMF structures.
Zavalina, Viktoriia. "Identifikace objektů v obraze." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220364.
Full textSaad, Elhusain Salem. "Defocus Blur-Invariant Scale-Space Feature Extractions." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1418907974.
Full textVeľas, Martin. "Automatické třídění fotografií podle obsahu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236399.
Full textGonzález, Valenzuela Ricardo Eugenio 1984. "Linear dimensionality reduction applied to SIFT and SURF feature descriptors." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275499.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-24T12:45:45Z (GMT). No. of bitstreams: 1 GonzalezValenzuela_RicardoEugenio_M.pdf: 22940228 bytes, checksum: 972bc5a0fac686d7eda4da043bbd61ab (MD5) Previous issue date: 2014
Resumo: Descritores locais robustos normalmente compõem-se de vetores de características de alta dimensionalidade para descrever atributos discriminativos em imagens. A alta dimensionalidade de um vetor de características implica custos consideráveis em termos de tempo computacional e requisitos de armazenamento afetando o desempenho de várias tarefas que utilizam descritores de características, tais como correspondência, recuperação e classificação de imagens. Para resolver esses problemas, pode-se aplicar algumas técnicas de redução de dimensionalidade, escencialmente, construindo uma matrix de projeção que explique adequadamente a importancia dos dados em outras bases. Esta dissertação visa aplicar técnicas de redução linear de dimensionalidade aos descritores SIFT e SURF. Seu principal objetivo é demonstrar que, mesmo com o risco de diminuir a precisão dos vetores de caraterísticas, a redução de dimensionalidade pode resultar em um equilíbrio adequado entre tempo computacional e recursos de armazenamento. A redução linear de dimensionalidade é realizada por meio de técnicas como projeções aleatórias (RP), análise de componentes principais (PCA), análise linear discriminante (LDA) e mínimos quadrados parciais (PLS), a fim de criar vetores de características de menor dimensão. Este trabalho avalia os vetores de características reduzidos em aplicações de correspondência e de recuperação de imagens. O tempo computacional e o uso de memória são medidos por comparações entre os vetores de características originais e reduzidos
Abstract: Robust local descriptors usually consist of high dimensional feature vectors to describe distinctive characteristics of images. The high dimensionality of a feature vector incurs into considerable costs in terms of computational time and storage requirements, which affects the performance of several tasks that employ feature vectors, such as matching, image retrieval and classification. To address these problems, it is possible to apply some dimensionality reduction techniques, by building a projection matrix which explains adequately the importance of the data in other basis. This dissertation aims at applying linear dimensionality reduction to SIFT and SURF descriptors. Its main objective is to demonstrate that, even risking to decrease the accuracy of the feature vectors, the dimensionality reduction can result in a satisfactory trade-off between computational time and storage. We perform the linear dimensionality reduction through Random Projections (RP), Independent Component Analysis (ICA), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Partial Least Squares (PLS) in order to create lower dimensional feature vectors. This work evaluates such reduced feature vectors in a matching application, as well as their distinctiveness in an image retrieval application. The computational time and memory usage are then measured by comparing the original and the reduced feature vectors. OBSERVAÇÃONa segunda folha, do arquivo em anexo, o meu nome tem dois pequenos erros
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Grünseisen, Vojtěch. "Vyhledávání graffiti tagů podle podobnosti." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236413.
Full textStefanik, Kevin Vincent. "Sequential Motion Estimation and Refinement for Applications of Real-time Reconstruction from Stereo Vision." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76802.
Full textMaster of Science
Hubený, Marek. "Koncepty strojového učení pro kategorizaci objektů v obrazu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316388.
Full textBooks on the topic "SURF FEATURES"
Argentina) Ventana Sur (2019 (Buenos Aires. Ventana Sur 2019: Film guide. Buenos Aires: Instituto Nacional de Cine y Artes Audiovisuales. INCAA, 2019.
Find full textCompassion focused therapy: Distinctive features. Hove: Routledge, 2010.
Find full textGilbert, Paul. Compassion focused therapy: Distinctive features. Hove: Routledge, 2010.
Find full textGagnon, François. Données sur l'économie du scénario au Québec pour le long métrage de fiction: Répertoire 1968-2000. Montréal: Centre de recherche cinéma/réception de l'Université de Montréal, 2002.
Find full textCanada. Feature Film Advisory Committee. The road to success : report of the Feature Film Advisory Committee =: La voie du succès : rapport du Comité consultatif sur le long métrage. Ottawa, Ont: Canadian Heritage = Patrimoine canadien, 1999.
Find full textWilliams, H. Major structural features of southeastern Canada and the Atlantic Continental Margin portrayed in regional gravity and magnetic maps =: Principaux éléments structuraux du sud-est du Canada et de la marge continentale de l'Atlantique tels que représentés sur des cartes gravimétriques et magnétiques régionales. Ottawa, Ont: Geological Survey of Canada = Commission géologique du Canada, 1994.
Find full textGoogle Chrome Browser User Guide for Beginners and Seniors: Learn and Master How to Use Google Chrome Browser to Surf the Internet, Setup and Use All Modern Chrome Features from Basic to Advance. Independently Published, 2022.
Find full textCrane, Rebecca. Mindfulness-Based Cognitive Therapy: Distinctive Features. Taylor & Francis Group, 2017.
Find full textMindfulness-Based Cognitive Therapy: Distinctive Features. Taylor & Francis Group, 2017.
Find full textCrane, Rebecca. Mindfulness-Based Cognitive Therapy: Distinctive Features. Taylor & Francis Group, 2008.
Find full textBook chapters on the topic "SURF FEATURES"
Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. "SURF: Speeded Up Robust Features." In Computer Vision – ECCV 2006, 404–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11744023_32.
Full textSouza, Luis, Christian Hook, João P. Papa, and Christoph Palm. "Barrett’s Esophagus Analysis Using SURF Features." In Informatik aktuell, 141–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54345-0_34.
Full textSrinivas, Badrinath G., and Phalguni Gupta. "Palmprint Based Verification System Using SURF Features." In Communications in Computer and Information Science, 250–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03547-0_24.
Full textFu, Jing, Xiaojun Jing, Songlin Sun, Yueming Lu, and Ying Wang. "C-SURF: Colored Speeded Up Robust Features." In Trustworthy Computing and Services, 203–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35795-4_26.
Full textShwetha, S., Sunanda Dixit, and B. I. Khondanpur. "Person Recognition Using Surf Features and Vola-Jones Algorithm." In Advances in Intelligent Systems and Computing, 537–43. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3156-4_56.
Full textM’hiri, Faten, Claudia Chevrefils, and Jean-Philippe Sylvestre. "Quality Assessment of Retinal Hyperspectral Images Using SURF and Intensity Features." In Lecture Notes in Computer Science, 118–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66185-8_14.
Full textZhang, Nan. "Computing Parallel Speeded-Up Robust Features (P-SURF) via POSIX Threads." In Emerging Intelligent Computing Technology and Applications, 287–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04070-2_33.
Full textPandey, Ramesh Chand, Rishabh Agrawal, Sanjay Kumar Singh, and K. K. Shukla. "Passive Copy Move Forgery Detection Using SURF, HOG and SIFT Features." In Advances in Intelligent Systems and Computing, 659–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11933-5_74.
Full textBatur, Aliya, Patigul Mamat, Wenjie Zhou, Yali Zhu, and Kurban Ubul. "Complex Printed Uyghur Document Image Retrieval Based on Modified SURF Features." In Pattern Recognition and Computer Vision, 99–111. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03338-5_9.
Full textShah, Munir, Jeremiah Deng, and Brendon Woodford. "Illumination Invariant Background Model Using Mixture of Gaussians and SURF Features." In Computer Vision - ACCV 2012 Workshops, 308–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37410-4_27.
Full textConference papers on the topic "SURF FEATURES"
Du, Geng, Fei Su, and Anni Cai. "Face recognition using SURF features." In Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Mingyue Ding, Bir Bhanu, Friedrich M. Wahl, and Jonathan Roberts. SPIE, 2009. http://dx.doi.org/10.1117/12.832636.
Full textIgnat, Anca, and Ioan Păvăloi. "Occluded Iris Recognition using SURF Features." In 16th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010255405080515.
Full textDeshmukh, Jyoti, and Udhav Bhosle. "SURF features based classifiers for mammogram classification." In 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2017. http://dx.doi.org/10.1109/wispnet.2017.8299734.
Full textLv, Di, Yunfu Deng, Zhihao Li, Qujiang Lei, Bo Liang, Jie Xu, and Xiuhao Li. "Advanced SURF Features Based Flexible Object Detection." In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019. http://dx.doi.org/10.1109/robio49542.2019.8961377.
Full textPancham, Ardhisha, Daniel Withey, and Glen Bright. "Tracking image features with PCA-SURF descriptors." In 2015 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE, 2015. http://dx.doi.org/10.1109/mva.2015.7153206.
Full textRabbani, Golam Shams, Sharmin Sultana, Md Nazmul Hasan, Salem Quddus Fahad, and Jia Uddin. "Person identification using SURF features of dental radiograph." In the 3rd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3309074.3309115.
Full textKarthik, R., A. AnnisFathima, and V. Vaidehi. "Panoramic view creation using invariant momentsand SURF features." In 2013 Third International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2013. http://dx.doi.org/10.1109/icrtit.2013.6844233.
Full textGigaud, Guillaume, and Pierre Moulin. "Traitor-tracing aided by compressed SURF image features." In 2010 44th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2010. http://dx.doi.org/10.1109/ciss.2010.5464707.
Full textAlfadhli, Fares Hasan Obaid, Ali Afzalian Mand, Md Shohel Sayeed, Kok Swee Sim, and Mundher Al-Shabi. "Classification of tuberculosis with SURF spatial pyramid features." In 2017 International Conference on Robotics, Automation and Sciences (ICORAS). IEEE, 2017. http://dx.doi.org/10.1109/icoras.2017.8308044.
Full textCui, Kai, Hua Cai, Yao Zhang, and Huan Chen. "A face alignment method based on SURF features." In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. http://dx.doi.org/10.1109/cisp-bmei.2017.8301964.
Full textReports on the topic "SURF FEATURES"
Michaels, Michelle, Theodore Letcher, Sandra LeGrand, Nicholas Webb, and Justin Putnam. Implementation of an albedo-based drag partition into the WRF-Chem v4.1 AFWA dust emission module. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/42782.
Full textLeGrand, Sandra, Theodore Letcher, Gregory Okin, Nicholas Webb, Alex Gallagher, Saroj Dhital, Taylor Hodgdon, Nancy Ziegler, and Michelle Michaels. Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1. Engineer Research and Development Center (U.S.), May 2023. http://dx.doi.org/10.21079/11681/47116.
Full textBabenko, Oksana. Ідеї екуменізму в публіцистиці митрополита Андрея Шептицького: сучасне прочитання. Ivan Franko National University of Lviv, March 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11717.
Full text