Academic literature on the topic 'Suppressor of Clathrin Deficiency 6'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Suppressor of Clathrin Deficiency 6.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Suppressor of Clathrin Deficiency 6"

1

Iwaki, Aya, and Shingo Izawa. "Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae." Biochemical Journal 446, no. 2 (August 14, 2012): 225–33. http://dx.doi.org/10.1042/bj20120583.

Full text
Abstract:
The stress response of eukaryotic cells often causes an attenuation of bulk translation activity and the accumulation of non-translating mRNAs into cytoplasmic mRNP (messenger ribonucleoprotein) granules termed cytoplasmic P-bodies (processing bodies) and SGs (stress granules). We examined effects of acidic stress on the formation of mRNP granules compared with other forms of stress such as glucose deprivation and a high Ca2+ level in Saccharomyces cerevisiae. Treatment with lactic acid clearly caused the formation of P-bodies, but not SGs, and also caused an attenuation of translation initiation, albeit to a lesser extent than glucose depletion. P-body formation was also induced by hydrochloric acid and sulfuric acid. However, lactic acid in SD (synthetic dextrose) medium with a pH greater than 3.0, propionic acid and acetic acid did not induce P-body formation. The results of the present study suggest that the assembly of yeast P-bodies can be induced by external conditions with a low pH and the threshold was around pH 2.5. The P-body formation upon acidic stress required Scd6 (suppressor of clathrin deficiency 6), a component of P-bodies, indicating that P-bodies induced by acidic stress have rules of assembly different from those induced by glucose deprivation or high Ca2+ levels.
APA, Harvard, Vancouver, ISO, and other styles
2

Nelson, K. K., and S. K. Lemmon. "Suppressors of clathrin deficiency: overexpression of ubiquitin rescues lethal strains of clathrin-deficient Saccharomyces cerevisiae." Molecular and Cellular Biology 13, no. 1 (January 1993): 521–32. http://dx.doi.org/10.1128/mcb.13.1.521-532.1993.

Full text
Abstract:
Clathrin-mediated vesicular transport is important for normal growth of the yeast Saccharomyces cerevisiae. Previously, we identified a genetic locus (SCD1) that influences the ability of clathrin heavy-chain-deficient (Chc-) yeast cells to survive. With the scd1-v allele, Chc- yeast cells are viable but grow poorly; with the scd1-i allele, Chc- cells are inviable. To identify the SCD1 locus and other genes that can rescue chc1 delta scd1-i cells to viability, a multicopy suppressor selection strategy was developed. A strain of scd1-i genotype carrying the clathrin heavy-chain gene under GAL1 control (GAL1:CHC1) was transformed with a YEp24 yeast genomic library, and colonies that could grow on glucose were selected. Plasmids from six distinct genetic loci, none of which encoded CHC1, were recovered. One of the suppressor loci was shown to be UBI4, the polyubiquitin gene. UBI4 rescues only in high copy number and is not allelic to SCD1. The conjugation of ubiquitin to intracellular proteins can mediate their selective degradation. Since UBI4 is required for survival of yeast cells under stress and is induced during starvation, ubiquitin expression in GAL1:CHC1 cells was examined. After a shift to growth on glucose to repress synthesis of clathrin heavy chains, UBI4 mRNA levels were elevated > 10-fold, whereas the quantity of free ubiquitin declined severalfold relative to that of Chc+ cells. In addition, novel higher-molecular-weight ubiquitin conjugates appeared in clathrin-deficient cells. We suggest that higher levels of ubiquitin are required for turnover of mislocalized or improperly processed proteins that accumulate in the absence of clathrin and that ubiquitin may play a general role in turnover of proteins in the secretory or endocytic pathway.
APA, Harvard, Vancouver, ISO, and other styles
3

Nelson, K. K., and S. K. Lemmon. "Suppressors of clathrin deficiency: overexpression of ubiquitin rescues lethal strains of clathrin-deficient Saccharomyces cerevisiae." Molecular and Cellular Biology 13, no. 1 (January 1993): 521–32. http://dx.doi.org/10.1128/mcb.13.1.521.

Full text
Abstract:
Clathrin-mediated vesicular transport is important for normal growth of the yeast Saccharomyces cerevisiae. Previously, we identified a genetic locus (SCD1) that influences the ability of clathrin heavy-chain-deficient (Chc-) yeast cells to survive. With the scd1-v allele, Chc- yeast cells are viable but grow poorly; with the scd1-i allele, Chc- cells are inviable. To identify the SCD1 locus and other genes that can rescue chc1 delta scd1-i cells to viability, a multicopy suppressor selection strategy was developed. A strain of scd1-i genotype carrying the clathrin heavy-chain gene under GAL1 control (GAL1:CHC1) was transformed with a YEp24 yeast genomic library, and colonies that could grow on glucose were selected. Plasmids from six distinct genetic loci, none of which encoded CHC1, were recovered. One of the suppressor loci was shown to be UBI4, the polyubiquitin gene. UBI4 rescues only in high copy number and is not allelic to SCD1. The conjugation of ubiquitin to intracellular proteins can mediate their selective degradation. Since UBI4 is required for survival of yeast cells under stress and is induced during starvation, ubiquitin expression in GAL1:CHC1 cells was examined. After a shift to growth on glucose to repress synthesis of clathrin heavy chains, UBI4 mRNA levels were elevated > 10-fold, whereas the quantity of free ubiquitin declined severalfold relative to that of Chc+ cells. In addition, novel higher-molecular-weight ubiquitin conjugates appeared in clathrin-deficient cells. We suggest that higher levels of ubiquitin are required for turnover of mislocalized or improperly processed proteins that accumulate in the absence of clathrin and that ubiquitin may play a general role in turnover of proteins in the secretory or endocytic pathway.
APA, Harvard, Vancouver, ISO, and other styles
4

Roy, Debadrita, and Purusharth I. Rajyaguru. "Suppressor of clathrin deficiency (Scd6)-An emerging RGG-motif translation repressor." Wiley Interdisciplinary Reviews: RNA 9, no. 5 (May 22, 2018): e1479. http://dx.doi.org/10.1002/wrna.1479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Munn, A. L., L. Silveira, M. Elgort, and G. S. Payne. "Viability of clathrin heavy-chain-deficient Saccharomyces cerevisiae is compromised by mutations at numerous loci: implications for the suppression hypothesis." Molecular and Cellular Biology 11, no. 8 (August 1991): 3868–78. http://dx.doi.org/10.1128/mcb.11.8.3868-3878.1991.

Full text
Abstract:
The gene encoding clathrin heavy chain in Saccharomyces cerevisiae (CHC1) is not essential for growth in most laboratory strains tested. However, in certain genetic backgrounds, a deletion of CHC1 (chc1) results in cell death. Lethality in these chc1 strains is determined by a locus designated SCD1 (suppressor of clathrin deficiency) which is unlinked to CHC1 (S. K. Lemmon and E. W. Jones, Science 238:504-509, 1987). The lethal allele of SCD1 has no effect on cell growth when the wild-type version of CHC1 is present. This result led to the proposal that most yeast strains are viable in the absence of clathrin heavy chain because they possess the SCD1 suppressor. Discovery of another yeast strain that cannot grow without clathrin heavy chain has allowed us to perform a genetic test of the suppressor hypothesis. Genetic crosses show that clathrin-deficient lethality in the latter strain is conferred by a single genetic locus (termed CDL1, for clathrin-deficient lethality). By constructing strains in which CHC1 expression is regulated by the GAL10 promoter, we demonstrate that the lethal alleles of SCD1 and CDL1 are recessive. In both cases, very low expression of CHC1 can allow cells to escape from lethality. Genetic complementation and segregation analyses indicate that CDL1 and SCD1 are distinct genes. The lethal CDL1 allele does not cause a defect in the secretory pathway of either wild-type or clathrin heavy-chain-deficient yeast. A systematic screen to identify mutants unable to grow in the absence of clathrin heavy chain uncovered numerous genes similar to SCD1 and CDL1. These findings argue against the idea that viability of chc1 cells is due to genetic suppression, since this hypothesis would require the existence of a large number of unlinked genes, all of which are required for suppression. Instead, lethality appears to be a common, nonspecific occurrence when a second-site mutation arises in a strain whose cell growth is already severely compromised by the lack of clathrin heavy chain.
APA, Harvard, Vancouver, ISO, and other styles
6

Munn, A. L., L. Silveira, M. Elgort, and G. S. Payne. "Viability of clathrin heavy-chain-deficient Saccharomyces cerevisiae is compromised by mutations at numerous loci: implications for the suppression hypothesis." Molecular and Cellular Biology 11, no. 8 (August 1991): 3868–78. http://dx.doi.org/10.1128/mcb.11.8.3868.

Full text
Abstract:
The gene encoding clathrin heavy chain in Saccharomyces cerevisiae (CHC1) is not essential for growth in most laboratory strains tested. However, in certain genetic backgrounds, a deletion of CHC1 (chc1) results in cell death. Lethality in these chc1 strains is determined by a locus designated SCD1 (suppressor of clathrin deficiency) which is unlinked to CHC1 (S. K. Lemmon and E. W. Jones, Science 238:504-509, 1987). The lethal allele of SCD1 has no effect on cell growth when the wild-type version of CHC1 is present. This result led to the proposal that most yeast strains are viable in the absence of clathrin heavy chain because they possess the SCD1 suppressor. Discovery of another yeast strain that cannot grow without clathrin heavy chain has allowed us to perform a genetic test of the suppressor hypothesis. Genetic crosses show that clathrin-deficient lethality in the latter strain is conferred by a single genetic locus (termed CDL1, for clathrin-deficient lethality). By constructing strains in which CHC1 expression is regulated by the GAL10 promoter, we demonstrate that the lethal alleles of SCD1 and CDL1 are recessive. In both cases, very low expression of CHC1 can allow cells to escape from lethality. Genetic complementation and segregation analyses indicate that CDL1 and SCD1 are distinct genes. The lethal CDL1 allele does not cause a defect in the secretory pathway of either wild-type or clathrin heavy-chain-deficient yeast. A systematic screen to identify mutants unable to grow in the absence of clathrin heavy chain uncovered numerous genes similar to SCD1 and CDL1. These findings argue against the idea that viability of chc1 cells is due to genetic suppression, since this hypothesis would require the existence of a large number of unlinked genes, all of which are required for suppression. Instead, lethality appears to be a common, nonspecific occurrence when a second-site mutation arises in a strain whose cell growth is already severely compromised by the lack of clathrin heavy chain.
APA, Harvard, Vancouver, ISO, and other styles
7

Nelson, K. K., M. Holmer, and S. K. Lemmon. "SCD5, a suppressor of clathrin deficiency, encodes a novel protein with a late secretory function in yeast." Molecular Biology of the Cell 7, no. 2 (February 1996): 245–60. http://dx.doi.org/10.1091/mbc.7.2.245.

Full text
Abstract:
Clathrin and its associated proteins constitute a major class of coat proteins involved in vesicle budding during membrane transport. An interesting characteristic of the yeast clathrin heavy chain gene (CHC1) is that in some strains a CHC1 deletion is lethal, while in others it is not. Recently, our laboratory developed a screen that identified five multicopy suppressors that can rescue lethal strains of clathrin heavy chain-deficient yeast (Chc - scd1-i) to viability. One of these suppressors, SCD5, encodes a novel protein of 872 amino acids containing two regions of repeated motifs of unknown function. Deletion of SCD5 has shown that it is essential for cell growth at 30 degrees C. scd5-delta strains carrying low copy plasmids encoding C-terminal truncations of Scd5p are temperature sensitive for growth at 37 degrees C. At the nonpermissive temperature, cells expressing a 338-amino acid deletion (Scd5P-delta 338) accumulate an internal pool of fully glycosylated invertase and mature alpha-factor, while processing and sorting of the vacuolar hydrolase carboxypeptidase Y is normal. The truncation mutant also accumulates 80- to 100-nm vesicles similar to many late sec mutants. Moreover, at 34 degrees C, overexpression of Scd5p suppresses the temperature sensitivity of a sec2 mutant, which is blocked at a post-Golgi step of the secretory pathway. Biochemical analyses indicate that approximately 50% of Scd5p sediments with a 100,000 x g membrane fraction and is associated as a peripheral membrane protein. Overall, these results indicate that Scd5p is involved in vesicular transport at a late stage of the secretory pathway. Furthermore, this suggests that the lethality of clathrin-deficient yeast can be rescued by modulation of vesicular transport at this late secretory step.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Saerom, Ga-Eun Lim, Yong-Nyun Kim, Hyeon-Sook Koo, and Jaegal Shim. "AP2M1 Supports TGF-β Signals to Promote Collagen Expression by Inhibiting Caveolin Expression." International Journal of Molecular Sciences 22, no. 4 (February 6, 2021): 1639. http://dx.doi.org/10.3390/ijms22041639.

Full text
Abstract:
The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Henry, Kenneth R., Kathleen D'Hondt, Ji Suk Chang, David A. Nix, M. Jamie T. V. Cope, Clarence S. M. Chan, David G. Drubin, and Sandra K. Lemmon. "The Actin-Regulating Kinase Prk1p Negatively Regulates Scd5p, a Suppressor of Clathrin Deficiency, in Actin Organization and Endocytosis." Current Biology 13, no. 17 (September 2003): 1564–69. http://dx.doi.org/10.1016/s0960-9822(03)00579-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robertson, Sarah E., Subba Rao Gangi Setty, Anand Sitaram, Michael S. Marks, Robert E. Lewis, and Margaret M. Chou. "Extracellular Signal-regulated Kinase Regulates Clathrin-independent Endosomal Trafficking." Molecular Biology of the Cell 17, no. 2 (February 2006): 645–57. http://dx.doi.org/10.1091/mbc.e05-07-0662.

Full text
Abstract:
Extracellular signal-regulated kinase (Erk) is widely recognized for its central role in cell proliferation and motility. Although previous work has shown that Erk is localized at endosomal compartments, no role for Erk in regulating endosomal trafficking has been demonstrated. Here, we report that Erk signaling regulates trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated endosomal pathway. Inactivation of Erk induced by a variety of methods leads to a dramatic expansion of the Arf6 endosomal recycling compartment, and intracellular accumulation of cargo, such as class I major histocompatibility complex, within the expanded endosome. Treatment of cells with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduces surface expression of MHCI without affecting its rate of endocytosis, suggesting that inactivation of Erk perturbs recycling. Furthermore, under conditions where Erk activity is inhibited, a large cohort of Erk, MEK, and the Erk scaffold kinase suppressor of Ras 1 accumulates at the Arf6 recycling compartment. The requirement for Erk was highly specific for this endocytic pathway, because its inhibition had no effect on trafficking of cargo of the classical clathrin-dependent pathway. These studies reveal a previously unappreciated link of Erk signaling to organelle dynamics and endosomal trafficking.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Suppressor of Clathrin Deficiency 6"

1

Gole, Shirish Gajanan. "Understanding the Role of Lsm Domain in Translation Repression Activity of RGG-motif Containing Protein Scd6." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4286.

Full text
Abstract:
Control of gene expression in eukaryotes is regulated at various steps such as transcription, translation and protein degradation. Translation repression of mRNA regulates protein levels and maintains cell homeostasis. Translation control allows for spatiotemporal regulation of gene expression which is required for development and differentiation in organisms. Deregulation of translation can result in disease conditions like cancer and neurodegenerative diseases. In yeast Saccharomyces cerevisiae, the RGG-motif protein Scd6 (Suppressor of Clathrin Deficiency 6) represses translation by binding eIF4G1 via its RGG domain and prevents formation of 48S pre-initiation complex. Scd6 consists of N-terminal Lsm domain, central FDF domain and C-terminal RGG domain. In this study, we assessed the contribution of other domains of Scd6 in its translation repression ability. Overexpression of Scd6 causes growth defect as a result of global translation repression. We observed that overexpression of Lsm domain deletion mutant could partially rescue the growth defect phenotype suggesting that Lsm domain might be contributing in Scd6 mediated translation repression. Deletion of FDF domain did not result in any significant change in the growth defect phenotype of Scd6 overexpression. Interestingly, both Lsm and RGG domains are necessary but insufficient to repress translation on their own. Lsm domains are conserved RNA binding domains. By mutating the putative RNA binding motif within the Lsm domain we observed a rescue from the growth defect phenotype of Scd6. Also, our preliminary results indicate that the RNA binding motif mutant of Lsm domain is defective in binding poly(U) RNA. We analyzed the translation repression ability of Lsm domain mutants by observing RNA granule formation under stress and non-stress conditions. We observe that the mutants are defective in localizing to granules. In addition, the mutant containing only Lsm domain localizes to nucleus like structure in non-stress condition and forms fewer RNA granules in the cytoplasm upon stress. Since Scd6 binds eIF4G1 to repress translation we analyzed the ability of Lsm domain lacking Scd6 mutant to interact with eIF4G1 in vivo. Our preliminary observations suggest that Scd6 mutant lacking Lsm domain is deficient in binding eIF4G1 in vivo. Considering all the observations from our studies, we propose a model in which Lsm domain of Scd6 helps in recognition of the mRNA target of Scd6 which is followed by eIF4G1-RGG domain interaction leading to translation repression.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Suppressor of Clathrin Deficiency 6"

1

Yu, Fang, Daping Fan, and Walden Ai. "Abstract LB-323: Deficiency of Kruppel-like factor KLF4 in mammary tumor cells resulted in inhibited tumor growth and pulmonary metastasis accompanied by compromised recruitment of myeloid-derived suppressor cells." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-lb-323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography