Academic literature on the topic 'Supported metal catalyst'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Supported metal catalyst.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Supported metal catalyst"
Trigoura, Leslie, Yalan Xing, and Bhanu P. S. Chauhan. "Recyclable Catalysts for Alkyne Functionalization." Molecules 26, no. 12 (June 9, 2021): 3525. http://dx.doi.org/10.3390/molecules26123525.
Full textHauli, Latifah, Karna Wijaya, and Ria Armunanto. "Preparation of Cr Metal Supported on Sulfated Zirconia Catalyst." Materials Science Forum 948 (March 2019): 221–27. http://dx.doi.org/10.4028/www.scientific.net/msf.948.221.
Full textMardwita, Mardwita, Eka Sri Yusmartini, and Nidya Wisudawati. "Effects of Cobalt and Chromium Loadings to The Catalytic Activities of Supported Metal Catalysts in Methane Oxidation." Bulletin of Chemical Reaction Engineering & Catalysis 15, no. 1 (January 15, 2020): 213–20. http://dx.doi.org/10.9767/bcrec.15.1.6320.213-220.
Full textMistri, Rajib, and Bidyapati Kumar. "Supported Transition Metal Catalysts for Organic Fine Chemical Synthesis: A Review." Asian Journal of Chemistry 33, no. 3 (2021): 489–98. http://dx.doi.org/10.14233/ajchem.2021.23025.
Full textHepburn, J. S. "EPMA/TEM characterization of a Pt/Al2O3 catalyst with a nonuniform internal distribution." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 274–75. http://dx.doi.org/10.1017/s0424820100153348.
Full textPatil, Siddappa A., Shivaputra A. Patil, and Renukadevi Patil. "Magnetic Nanoparticles Supported Carbene and Amine Based Metal Complexes in Catalysis." Journal of Nano Research 42 (July 2016): 112–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.42.112.
Full textGökağaç, Gülsün, and Brendan J. Kennedy. "Carbon Supported Pt+Os Catalysts for Methanol Oxidation." Zeitschrift für Naturforschung B 57, no. 2 (February 1, 2002): 193–201. http://dx.doi.org/10.1515/znb-2002-0211.
Full textYe, Ke, Ying Liu, Shubin Wu, and Junping Zhuang. "Efficient catalytic liquefaction of organosolv lignin over transition metal supported on HZSM-5." BioResources 17, no. 2 (March 25, 2022): 2275–95. http://dx.doi.org/10.15376/biores.17.2.2275-2295.
Full textSasaki, Teruyoshi, Yusuke Horino, Tadashi Ohtake, Kazufumi Ogawa, and Yoshifumi Suzaki. "A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface." Catalysts 10, no. 5 (April 25, 2020): 472. http://dx.doi.org/10.3390/catal10050472.
Full textMita, Yasuhiro. "Development of metal-supported catalyst." DENKI-SEIKO[ELECTRIC FURNACE STEEL] 61, no. 2 (1990): 124–35. http://dx.doi.org/10.4262/denkiseiko.61.124.
Full textDissertations / Theses on the topic "Supported metal catalyst"
Widyaningrum, Rosalia Nugraheni. "Mesoporous silica-supported catalysts to enhance hydrogen production during cellulose pyrolysis." Thesis, The University of Sydney, 2011. https://hdl.handle.net/2123/28917.
Full textIwanow, Melanie [Verfasser], and Burkhard [Akademischer Betreuer] König. "Supported Metal Catalyst Preparation using Deep Eutectic Solvents / Melanie Iwanow ; Betreuer: Burkhard König." Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215905971/34.
Full textMin, Byoung Koun. "Scanning tunneling microscopic studies of SiO2 thin film supported metal nano-clusters." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2737.
Full textKamiuchi, Naoto. "Studies on Nano-structures and Catalytic Activities of Oxide-supported Precious Metal Catalysts." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120878.
Full textWang, Shengye. "Algal and alginate based beads and foams as sorbents for metal sorption and catalyst supports for 3-nitrophenol hydrogenation." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG001.
Full textThis work describes the synthesis of a series of materials based on alginate and algal biomass (AB); these materials have been designed under different shapes: beads and foams. Special processes have been developed for directly using the algal biomass (without adding other polymers) with the double objective of simple processing and environmentally-friendly manufacturing (reduced production of sub-products and without additional resources). These materials have been tested first for metal recovery for heavy metal decontamination (Pb(II) and Cu(II)) but also for the valorization of metals (platinum groups metals, PGMs: Pd(II) and Pt(IV)). These studies were performed investigating various operating conditions in order to evaluate sorption capacities and limiting steps but also to identify the processes to be used for improving sorption performance. The incorporation of poly(ethyleneimine), PEI, is a promising method for increasing the density of highly reactive groups (amine functions). Different processes have been tested: (a) the incorporation of particles of PEI crosslinked with glutaraldehyde (heterogeneous beads: ABA/PEI), and (b) the homogeneous grafting of PEI on alginate (followed by glutaraldehyde crosslinking) (HABA/PEI beads). Several techniques have been used for characterizing the sorption process and the structure of developed sorbents, including FTIR spectroscopy, SEM & SEM-EDX analysis. In a second step selected materials have been tested for supported catalysis using the simple reaction of hydrogenation of 3–nitrophenol (3-NP) as a test reaction. The results are structured in 3 parts successively developed: (a) synthesis of alginate, AB and AB/PEI beads and testing for sorption heavy metals and PGMs, (b) comparison of Pd(II) sorption properties of AB/PEI composite beads prepared by the homogeneous and the heterogeneous routes (and their application to supported catalytic tests), and (c) synthesis of highly porous foams (prepared by reaction of alginate with PEI) and the testing of Pd(II) sorption and Pd-supported catalysis (in fixed-bed reactor). While PEI hardly affects the sorption of heavy metals (due to direct interaction with carboxylic groups of alginate or algal biomass), the presence of PEI strongly improves metal binding in the case of PGMs (the protonated amine groups strongly bind chloro-anionic PGM species). All the sorbents have a preference for Pb(II) over Cu(II) and for Pd(II) over Pt(IV), especially for alginate and AB beads because the presence of PEI limits the selectivity of the material for Pb(II) and Pd(II). Both the sorption capacity and the stability of composite alginate/PEI beads were improved while using the homogeneous synthesis mode (the PEI polymer being homogeneously dispersed in the bead before glutaraldehyde crosslinking). The two supports (heterogeneous vs. homogeneous beads) loaded with Pd(II) and subsequently reduced gave comparable catalytic performance (lower than conventional catalysts) but the homogeneous mode improves the long-term stability. The conditioning of the catalytic support as a foam allows testing the catalytic reaction in fixed-bed system: the conditioning improves mass transfer properties compared to beads and the apparent rate constant is only slightly reduced after operating 30 cycles
CORVA, MANUEL. "Experimental modeling of nanostructured and single metal atom supported catalysts at close-to-ambient conditions." Doctoral thesis, Università degli Studi di Trieste, 2019. http://hdl.handle.net/11368/2991050.
Full textThis Thesis work deals with the growth and characterization of model nanostructured surface systems in ultra-high vacuum environment (UHV, <10−9 mbar) and with their evolution at near ambient pressure (NAP, 0.1 - 100 mbar) conditions. The investigations are performed with the aid of specific in situ techniques (IR-Vis SFG, NAP-XPS, etc.) in order to probe the structural, electronic, chemical and catalytic properties of the models. The latter span from ordered lattices of metal nanoparticles to 2D metallorganic crystals, where stabilized mono-metallic centers act as the active cores. These systems, based on single metal atom centers, represent the main topic of this manuscript and they will be referred to as Single Metal Atom Catalysts (SMAC). The discussion of the scientific findings will first focus on the evolution of graphene supported Pt nanoclusters in CO atmosphere, varying both surface temperature and CO pressure to test the stability of the nanostructures. As degradation of this nanosystem occurs at realistic reaction conditions, the attention was shifted to the design and synthesis of model SMAC systems, where the single metal atom is stabilized in a metallorganic cage, thus preventing structural degradation. A first, prototype SMAC model system consisted of a single layer of Nickel tetraphenyl porphyrins (Ni-TPPs) deposited on the Cu(100) surface. We proved that, following to NO exposure, a hyponitrite species (N2O2) readily forms at the Ni sites already at UHV conditions and is stable at room temperature. The NO conversion is observed only on the NiTPP monolayer interacting with the underlying copper surface, showing that the substrate plays a major role, governing the properties of the nanostructured system through trans-effects associated with a strong surface-to-molecule charge transfer. A single Iron Phthalocyanine (FePc) layer was instead considered for a model carbonylation reaction. The metalorganic molecules were deposited both on a single foil of graphene, grown on the Ir(111) surface (FePc/GR), and on an alumina ultra-thin film, grown on the Ni3Al(111) surface (FePc/alumina). In both cases, we exploited CO adsorption to probe the molecular active sites. On the FePc/GR layer, IR-Vis SFG evidenced unexpected CO stretching modes in 1-10 mbar CO at 300 K. We ascribe the observed vibrational features to the production of long-lived molecular excitons (induced by the visible radiation). The long lifetime of these excitons and their efficient production through singlet-fission mechanisms represent intriguing findings for innovative organic devices for solar energy conversion. We also investigated the interaction of the same system with gas-phase CO2 We found that oxidation of the underlying graphene support yields the control of the charge transfer to the active sites, thus reducing the threshold pressure for CO2 adsorption and activation at 300 K by at least two orders of magnitude. As CO2 catalytic conversion is hindered by its low reactivity, enhancing its adsorption to metal sites is crucial in the framework of the efficient conversion of this waste gas to valuable chemicals. A practical route to alter the mesoscopic properties of the single metal atom centers has been found, and in parallel we proved a novel graphene oxidation route employing molecular oxygen at near ambient pressure. Concerning instead the FePc/alumina film, we demonstrated that decoration by Cu nanoclusters tunes the surface potential energy, inducing a different symmetry in the molecular overlayer lattice, scarcely affecting the reactivity of the metallic sites, as proved by the vibrational modes of adsorbed CO molecules. Thus, we succeeded in tailoring the motif of a self-assembled metallorganic layer while preserving its active sites properties.
Xu, Chunbao. "Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07302006-231517/.
Full textTeja, Amyn, Committee Chair ; Kohl, Paul, Committee Member ; Liu, Meilin, Committee Member ; Nair,Sankar, Committee Member ; Rousseau, Ronald, Committee Member.
Verna, Frédérique. "Etude de l'interaction metal-compose sulfure en catalyse d'hydrogenation." Paris 6, 1988. http://www.theses.fr/1988PA066584.
Full textPrice, Robert. "Metal/metal oxide co-impregnated lanthanum strontium calcium titanate anodes for solid oxide fuel cells." Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/16018.
Full textAnderson, J. B. F. "Strong metal-support interactions in titania-supported metal catalysts." Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372539.
Full textBooks on the topic "Supported metal catalyst"
1962-, Anderson James A., and Fernández Garcia Marcos, eds. Supported metals in catalysis. Hackensack, NJ: World Scientific, 2005.
Find full text1937-, Anderson James A., and Fernández Garcia Marcos, eds. Supported metals in catalysis. London: Imperial College Press, 2005.
Find full textSupported metals in catalysis. 2nd ed. London : Imperial College Press: Distributed by World Scientific, 2012.
Find full textBaker, R. T. K., 1938-, Tauster S. J. 1935-, Dumesic J. A. 1949-, American Chemical Society. Division of Petroleum Chemistry., American Chemical Society. Division of Industrial and Engineering Chemistry., American Chemical Society. Division of Colloid and Surface Chemistry., and American Chemical Society Meeting, eds. Strong metal-support interactions. Washington, DC: The Society, 1986.
Find full textA, Stevenson Scott, ed. Metal-support interactions in catalysis, sintering, and redispersion. New York: Van Nostrand Reinhold Co., 1987.
Find full textAdamiec, Jan. Badania nad wpływem nośnika na własności sorpcyjne i stabilność termiczna katalizatorów typu metal grupy platyny-nośnik tlenkowy. Poznań: Wydawn. Nauk. Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1989.
Find full textVerma, Nita. A study of supported metal catalysts. Uxbridge: Brunel University, 1991.
Find full textSupported metal complexes: A new generation of catalysts. Dordrecht: D. Reidel, 1985.
Find full textRollins, Keith. Preparation and characterisation of supported metal chloride oxychlorination catalysts. Uxbridge: Brunel University, 1985.
Find full textHabibi, D. Catalysis of petrochemical reactions by supported metal complexes. Manchester: UMIST, 1987.
Find full textBook chapters on the topic "Supported metal catalyst"
Cohen, J. B., P. Georgopoulos, J. B. Butt, and R. L. Burwell. "Diffraction from Supported Metal Catalysts." In Catalyst Characterization Science, 385–90. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch033.
Full textMiura, H., S. S. Feng, R. Saymeh, and R. D. Gonzalez. "The Effect of Support-Metal Precursor Interactions on the Surface Composition of Supported Bimetallic Clusters." In Catalyst Characterization Science, 294–304. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch025.
Full textChatterjee, Maya, Takayuki Ishizaka, and Hajima Kawanami. "Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst." In ACS Symposium Series, 191–250. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1194.ch009.
Full textDarji, R., and A. Howie. "Secondary electron imaging in characterisation of heterogeneous supported metal catalyst systems." In Electron Microscopy and Analysis 1997, 391–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-101.
Full textKoleva, M. K., A. E. Eiyias, and L. A. Petrov. "Fractal Power Spectrum at Catalytic Oxidation of HCOOH over Supported Pd Catalyst." In Metal-Ligand Interactions in Chemistry, Physics and Biology, 353–69. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4245-8_15.
Full textKapil, Nidhi. "Controlled Engineering of Supported Metal Nanoparticles Using Electrospraying: Robust Removal of Stabilising Ligands." In Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation, 157–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15066-1_7.
Full textMasson, A. "Peculiar Aspects of Heterogeneous Nucleation and Growth Processes Related to Metal Supported Catalyst." In Contribution of Clusters Physics to Materials Science and Technology, 295–309. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4374-2_9.
Full textNagai, Takashi, Hiroki Kumakura, Masahito Abe, Kotaro Seki, and Daiki Noguchi. "Development of a New Recycling Process of PGM from Metal-Supported Catalyst Using Complex Oxide." In Characterization of Minerals, Metals, and Materials 2017, 379–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51382-9_41.
Full textRana, Surjyakanta, and Kulamani Parida. "Transition Metal-Substituted Salt of Tungsten-Based Polyoxometalate-Supported Mesoporous Silica as a Catalyst for Organic Transformation Reactions." In Environmentally Benign Catalysts, 57–90. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6710-2_3.
Full textReek, J. N. H., P. W. N. M. Van Leeuwen, A. G. J. Van Der Ham, and A. B. De Haan. "Supported Catalysts." In Catalysis by Metal Complexes, 39–72. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4087-3_3.
Full textConference papers on the topic "Supported metal catalyst"
Nishizawa, Kimiyoshi, Kohji Masuda, Hideaki Horie, and Junichiro Hirohashi. "Development of Improved Metal-Supported Catalyst." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/890188.
Full textGhosh, Bankim B., Prokash Chandra Roy, Mita Ghosh, Paritosh Bhattacharya, Rajsekhar Panua, and Prasanta K. Santra. "Control of S.I. Engine Exhaust Emissions Using Non-Precious Catalyst (ZSM-5) Supported Bimetals and Noble Metals as Catalyst." In ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1025.
Full textTakada, Toshihiro, and Takashi Tanaka. "Development of a Highly Heat-Resistant Metal Supported Catalyst." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910615.
Full textChen, Lan, and Yuheng Quan. "Catalytic Ozonation Using Metal Catalyst Supported on NaY Zeolite." In 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/iceesd-17.2017.156.
Full textWu, Quanwen, Wenhua Luo, Daqiao Meng, Jinchun Bao, and Jingwen Ba. "High Efficient Detritiation Catalysts for Fusion Safety." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81269.
Full textDahlan, I. Nyoman Marsih, I. G. B. N. Makertihartha, Piyasan Praserthdam, Joongjai Panpranot, and Ismunandar. "Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst." In THE 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930791.
Full textNitone, Umesh, Jayaveersinh Mahida, Seema Agrawal, and Ravi Patel. "Silica supported copper nano particles design from metal waste apply formation of various condensation reaction." In 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.9.
Full textYu, Guo, Zhou Lu, Zhao Wen, Jian Chen, Makoto Sakurai, and Hideo Kameyama. "A Multipurpose Anodic Alumina Supported Metal Monolithic Catalyst for Steam Reforming of Hydrocarbon." In Innovative Materials for Processes in Energy Systems 2010. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-7614-2_impres033.
Full textPelters, Stephan, Friedrich W. Kaiser, and Wolfgang Maus. "The Development and Application of a Metal Supported Catalyst for Porsche's 911 Carrera 4." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/890488.
Full textIotti, Corrado, Vincenzo Rossi, Luca Poggio, Mathias Holzinger, Lorenzo Pace, and Manuel Presti. "Backpressure Optimized Metal Supported Close Coupled PE Catalyst - First Application on a Maserati Powertrain." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1105.
Full textReports on the topic "Supported metal catalyst"
Henrich, V. Model catalyst studies of active sites and metal support interactions on vanadia and vanadia-supported catalysts. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5484103.
Full textGates, B. C. Metal-support bonds in supported metal catalysts. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6446860.
Full textRavindra Datta, Ajeet Singh, Manuela Serban, and Istvan Halasz. Supported Molten Metal Catalysis. A New Class of Catalysts. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/889459.
Full textGates, B. C. Characterization of the metal-support interface in supported metal and supported metal complex catalysts. [Final report]. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10191456.
Full textDosch, R., H. Stephens, F. Stohl, B. Bunker, and C. Peden. Hydrous metal oxide-supported catalysts. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7015232.
Full textBoszormenyi, Istvan. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/10115869.
Full textBoszormenyi, I. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/6827194.
Full textMetiu, Horia. Theoretical Studies of Catalysis on Supported Metal Clusters. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada442760.
Full textGardner, T. J., L. I. McLaughlin, L. R. Evans, and A. K. Datye. Preparation and evaluation of novel hydrous metal oxide (HMO)-supported noble metal catalysts. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/671938.
Full textD. W. Goodman, J. Wang, B. K. Min, E. Ozensoy, and F. Yang. Toward an Understanding of Catalysis by Supported Metal Nanoclusters. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/813462.
Full text