Academic literature on the topic 'Supervised categorization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Supervised categorization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Supervised categorization"
Rodrigues, Valter, and Josef Skrzypek. "COMBINING SIMILARITIES AND DISSIMILARITIES IN SUPERVISED LEARNING." International Journal of Neural Systems 02, no. 03 (January 1991): 263–73. http://dx.doi.org/10.1142/s0129065791000236.
Full textArya, Vaishali, and Rashmi Agrawal. "Improvement in Text Categorization Using Semi-Supervised Approach and Lexical Chains." Journal of Computational and Theoretical Nanoscience 16, no. 12 (December 1, 2019): 5122–26. http://dx.doi.org/10.1166/jctn.2019.8573.
Full textMandal, Ashis Kumar, and Rikta Sen. "Supervised Learning Methods for Bangla Web Document Categorization." International Journal of Artificial Intelligence & Applications 5, no. 5 (September 30, 2014): 93–105. http://dx.doi.org/10.5121/ijaia.2014.5508.
Full textMahmood, Amjad, Tianrui Li, Yan Yang, Hongjun Wang, and Mehtab Afzal. "Semi-supervised evolutionary ensembles for Web video categorization." Knowledge-Based Systems 76 (March 2015): 53–66. http://dx.doi.org/10.1016/j.knosys.2014.11.030.
Full textLi, Ximing, Jihong Ouyang, Xiaotang Zhou, You Lu, and Yanhui Liu. "Supervised labeled latent Dirichlet allocation for document categorization." Applied Intelligence 42, no. 3 (November 25, 2014): 581–93. http://dx.doi.org/10.1007/s10489-014-0595-0.
Full textXu, Zewen, Jianqiang Li, Bo Liu, Jing Bi, Rong Li, and Rui Mao. "Semi-supervised learning in large scale text categorization." Journal of Shanghai Jiaotong University (Science) 22, no. 3 (May 30, 2017): 291–302. http://dx.doi.org/10.1007/s12204-017-1835-3.
Full textLu, Wei, and Min-Yen Kan. "Supervised categorization of JavaScriptTM using program analysis features." Information Processing & Management 43, no. 2 (March 2007): 431–44. http://dx.doi.org/10.1016/j.ipm.2006.07.019.
Full textCAI, Yue-hong, Qian ZHU, Ping SUN, and Xian-yi CHENG. "Semi-supervised short text categorization based on attribute selection." Journal of Computer Applications 30, no. 4 (April 30, 2010): 1015–18. http://dx.doi.org/10.3724/sp.j.1087.2010.01015.
Full textROBINS, ANTHONY V. "Incorporating Supervised Learning in the Domains Account of Categorization." Connection Science 4, no. 1 (January 1992): 45–56. http://dx.doi.org/10.1080/09540099208946603.
Full textYan, Yang, Lihui Chen, and William-Chandra Tjhi. "Semi-supervised fuzzy co-clustering algorithm for document categorization." Knowledge and Information Systems 34, no. 1 (November 15, 2011): 55–74. http://dx.doi.org/10.1007/s10115-011-0454-9.
Full textDissertations / Theses on the topic "Supervised categorization"
Mathew, Thomas A. "Supervised categorization of habitual versus episodic sentences." Connect to Electronic Thesis (CONTENTdm), 2009. http://worldcat.org/oclc/456291172/viewonline.
Full textMann, Anna, and Olivia Höft. "Categorization of Swedish e-mails using Supervised Machine Learning." Thesis, KTH, Hälsoinformatik och logistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296558.
Full textDagens samhälle blir alltmer digitaliserat och ett vanligt kommunikationssätt är att skicka e-postmeddelanden. I dagsläget har företaget Auranest ett filter för att kategorisera e-postmeddelanden men filtret är några år gammalt. Användningsområdet för filtret är att sortera ut värdefulla e-postmeddelanden för arbetssökande, där kontakt kan ske från arbetsgivare. Företaget vill veta ifall kategoriseringen kan göras med en annan metod samt förbättras. Målet med examensarbetet är att undersöka ifall filtreringen kan göras med högre träffsäkerhet med hjälp av maskininlärning. Tre övervakade maskininlärningsalgoritmer, Naïve Bayes, Support Vector Machine (SVM) och Decision Tree, har granskats och algoritmen med de högsta resultaten har jämförts med Auranests befintliga filter. Träffsäkerhet, precision, känslighet och F1-poäng har använts för att avgöra vilken maskininlärningsalgoritm som gav högst resultat sinsemellan samt i jämförelse med Auranests filter. Resultatet påvisade att den övervakade maskininlärningsmetoden SVM åstadkom de främsta resultaten i samtliga mätvärden. Jämförelsen mellan Auranests befintliga filter och SVM visade att SVM presterade bättre i alla kalkylerade mätvärden, där träffsäkerheten visade 99,5% för SVM och 93,03% för Auranests filter. De jämförande resultaten visade att träffsäkerheten var den enda faktorn som gav liknande resultat. För de övriga mätvärdena var det en märkbar skillnad.
Doan, Charles A. "Connecting Unsupervised and Supervised Categorization Behavior from a Parainformative Perspective." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1521548439515138.
Full textBenbrahim, Houda. "A fuzzy semi-supervised support vector machine approach to hypertext categorization." Thesis, University of Portsmouth, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494145.
Full textColreavy, Erin Patricia. "Unsupervised categorization : perceptual shift, strategy development, and general principles." University of Western Australia. School of Psychology, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0232.
Full textGuo, Pei. "Interpretable Fine-Grained Visual Categorization." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9119.
Full textZhu, Ruifeng. "Contribution to graph-based manifold learning with application to image categorization." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA015.
Full textGraph-based Manifold Learning algorithms are regarded as a powerful technique for feature extraction and dimensionality reduction in Pattern Recogniton, Computer Vision and Machine Learning fields. These algorithms utilize sample information contained in the item-item similarity and weighted matrix to reveal the intrinstic geometric structure of manifold. It exhibits the low dimensional structure in the high dimensional data. This motivates me to develop Graph-based Manifold Learning techniques on Pattern Recognition, specially, application to image categorization. The experimental datasets of thesis correspond to several categories of public image datasets such as face datasets, indoor and outdoor scene datasets, objects datasets and so on. Several approaches are proposed in this thesis: 1) A novel nonlinear method called Flexible Discriminant graph-based Embedding with feature selection (FDEFS) is proposed. We seek a non-linear and a linear representation of the data that can be suitable for generic learning tasks such as classification and clustering. Besides, a byproduct of the proposed embedding framework is the feature selection of the original features, where the estimated linear transformation matrix can be used for feature ranking and selection. 2) We investigate strategies and related algorithms to develop a joint graph-based embedding and an explicit feature weighting for getting a flexible and inductive nonlinear data representation on manifolds. The proposed criterion explicitly estimates the feature weights together with the projected data and the linear transformation such that data smoothness and large margins are achieved in the projection space. Moreover, this chapter introduces a kernel variant of the model in order to get an inductive nonlinear embedding that is close to a real nonlinear subspace for a good approximation of the embedded data. 3) We propose the graph convolution based semi-supervised Embedding (GCSE). It provides a new perspective to non-linear data embedding research, and makes a link to signal processing on graph methods. The proposed method utilizes and exploits graphs in two ways. First, it deploys data smoothness over graphs. Second, its regression model is built on the joint use of the data and their graph in the sense that the regression model works with convolved data. The convolved data are obtained by feature propagation. 4) A flexible deep learning that can overcome the limitations and weaknesses of single-layer learning models is introduced. We call this strategy an Elastic graph-based embedding with deep architecture which deeply explores the structural information of the data. The resulting framework can be used for semi-supervised and supervised settings. Besides, the resulting optimization problems can be solved efficiently
Miloš, Radovanović. "High-Dimensional Data Representations and Metrics for Machine Learning and Data Mining." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2011. https://www.cris.uns.ac.rs/record.jsf?recordId=77530&source=NDLTD&language=en.
Full textU tekućem „informatičkom dobu“, masivne količine podataka sesakupljaju brzinom koja ne dozvoljava njihovo efektivno strukturiranje,analizu, i pretvaranje u korisno znanje. Ovo zasićenje informacijamase manifestuje kako kroz veliki broj objekata uključenihu skupove podataka, tako i kroz veliki broj atributa, takođe poznatkao velika dimenzionalnost. Disertacija se bavi problemima kojiproizilaze iz velike dimenzionalnosti reprezentacije podataka, čestonazivanim „prokletstvom dimenzionalnosti“, u kontekstu mašinskogučenja, data mining-a i information retrieval-a. Opisana istraživanjaprate dva pravca: izučavanje ponašanja metrika (ne)sličnosti u odnosuna rastuću dimenzionalnost, i proučavanje metoda odabira atributa,prvenstveno u interakciji sa tehnikama reprezentacije dokumenata zaklasifikaciju teksta. Centralni rezultati disertacije, relevantni za prvipravac istraživanja, uključuju teorijske uvide u fenomen koncentracijekosinusne mere sličnosti, i detaljnu analizu fenomena habovitosti kojise odnosi na tendenciju nekih tačaka u skupu podataka da postanuhabovi tako što bivaju uvrštene u neočekivano mnogo lista k najbližihsuseda ostalih tačaka. Mehanizmi koji pokreću fenomen detaljno suproučeni, kako iz teorijske tako i iz empirijske perspektive. Habovitostje povezana sa (latentnom) dimenzionalnošću podataka, opisanaje njena interakcija sa strukturom klastera u podacima i informacijamakoje pružaju oznake klasa, i demonstriran je njen efekat napoznate algoritme za klasifikaciju, semi-supervizirano učenje, klasteringi detekciju outlier-a, sa posebnim osvrtom na klasifikaciju vremenskihserija i information retrieval. Rezultati koji se odnose nadrugi pravac istraživanja uključuju kvantifikaciju interakcije izmeđurazličitih transformacija višedimenzionalnih reprezentacija dokumenatai odabira atributa, u kontekstu klasifikacije teksta.
Book chapters on the topic "Supervised categorization"
Chen, Xingyu, and Mizuho Iwaihara. "Weakly-Supervised Neural Categorization of Wikipedia Articles." In Digital Libraries at the Crossroads of Digital Information for the Future, 16–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34058-2_2.
Full textNiaz, Usman Farrokh, and Bernard Merialdo. "Entropy Based Supervised Merging for Visual Categorization." In Advanced Concepts for Intelligent Vision Systems, 420–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33140-4_37.
Full textDebole, Franca, and Fabrizio Sebastiani. "Supervised Term Weighting for Automated Text Categorization." In Text Mining and its Applications, 81–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45219-5_7.
Full textTürker, Rima, Lei Zhang, Mehwish Alam, and Harald Sack. "Weakly Supervised Short Text Categorization Using World Knowledge." In Lecture Notes in Computer Science, 584–600. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62419-4_33.
Full textZhu, Yan, Liping Jing, and Jian Yu. "New Labeling Strategy for Semi-supervised Document Categorization." In Knowledge Science, Engineering and Management, 134–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10488-6_16.
Full textMahmood, Amjad, Tianrui Li, Yan Yang, Hongjun Wang, and Mehtab Afzal. "Semi-supervised Clustering Ensemble for Web Video Categorization." In Multiple Classifier Systems, 190–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38067-9_17.
Full textLu, Wei, and Min-Yen Kan. "Supervised Categorization of JavaScriptTM Using Program Analysis Features." In Information Retrieval Technology, 160–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11562382_13.
Full textGowda, Harsha S., Mahamad Suhil, D. S. Guru, and Lavanya Narayana Raju. "Semi-supervised Text Categorization Using Recursive K-means Clustering." In Communications in Computer and Information Science, 217–27. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4859-3_20.
Full textWei, Bifan, Boqin Feng, Feijuan He, and Xiaoyu Fu. "An Extended Supervised Term Weighting Method for Text Categorization." In Proceedings of the International Conference on Human-centric Computing 2011 and Embedded and Multimedia Computing 2011, 87–99. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2105-0_11.
Full textLi, Shoushan, Sophia Yat Mei Lee, Wei Gao, and Chu-Ren Huang. "Semi-supervised Text Categorization by Considering Sufficiency and Diversity." In Communications in Computer and Information Science, 105–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41644-6_11.
Full textConference papers on the topic "Supervised categorization"
Aldershoff, Frank, Alfons H. Salden, Sorin M. Iacob, and Masja Kempen. "Supervised multimedia categorization." In Electronic Imaging 2003, edited by Minerva M. Yeung, Rainer W. Lienhart, and Chung-Sheng Li. SPIE, 2003. http://dx.doi.org/10.1117/12.476242.
Full textThung, Ferdian, Xuan-Bach D. Le, and David Lo. "Active Semi-supervised Defect Categorization." In 2015 IEEE 23rd International Conference on Program Comprehension (ICPC). IEEE, 2015. http://dx.doi.org/10.1109/icpc.2015.15.
Full textHu, Jianying, Moninder Singh, and Aleksandra Mojsilovic. "Categorization using semi-supervised clustering." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761253.
Full textYu, Zhenghua. "Image Categorization with Semi-Supervised Learning." In 2006 International Conference on Image Processing. IEEE, 2006. http://dx.doi.org/10.1109/icip.2006.313043.
Full textPan, Xin, and Suli Zhang. "Semi-supervised fuzzy learning in text categorization." In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011). IEEE, 2011. http://dx.doi.org/10.1109/fskd.2011.6019630.
Full textQuadery, Fahim, Abdullah Al Maruf, Tamjid Ahmed, and Md Saiful Islam. "Semi supervised keyword based bengali document categorization." In 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE, 2016. http://dx.doi.org/10.1109/ceeict.2016.7873040.
Full textBenmokhtar, Rachid, Jonathan Delhumeau, and Philippe-Henri Gosselin. "Efficient supervised dimensionality reduction for image categorization." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638090.
Full textDebole, Franca, and Fabrizio Sebastiani. "Supervised term weighting for automated text categorization." In the 2003 ACM symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/952532.952688.
Full textXu, Zenglin, Rong Jin, Kaizhu Huang, Michael R. Lyu, and Irwin King. "Semi-supervised text categorization by active search." In Proceeding of the 17th ACM conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1458082.1458364.
Full textZhang, Yu, Yu Meng, Jiaxin Huang, Frank F. Xu, Xuan Wang, and Jiawei Han. "Minimally Supervised Categorization of Text with Metadata." In SIGIR '20: The 43rd International ACM SIGIR conference on research and development in Information Retrieval. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3397271.3401168.
Full text