Journal articles on the topic 'Superoxide'

To see the other types of publications on this topic, follow the link: Superoxide.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Superoxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fridovich, Irwin. "Superoxide and superoxide dismutases." Free Radical Biology and Medicine 15, no. 5 (November 1993): 472. http://dx.doi.org/10.1016/0891-5849(93)90188-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fridovich, Irwin. "Superoxide Radical and Superoxide Dismutases." Annual Review of Biochemistry 64, no. 1 (June 1995): 97–112. http://dx.doi.org/10.1146/annurev.bi.64.070195.000525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sheng, Yuewei, Isabel A. Abreu, Diane E. Cabelli, Michael J. Maroney, Anne-Frances Miller, Miguel Teixeira, and Joan Selverstone Valentine. "Superoxide Dismutases and Superoxide Reductases." Chemical Reviews 114, no. 7 (April 2014): 3854–918. http://dx.doi.org/10.1021/cr4005296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nishiura, Toshiki, Takehiro Ohta, Takashi Ogura, Jun Nakazawa, Masaya Okamura, and Shiro Hikichi. "The Conversion of Superoxide to Hydroperoxide on Cobalt(III) Depends on the Structural and Electronic Properties of Azole-Based Chelating Ligands." Molecules 27, no. 19 (September 28, 2022): 6416. http://dx.doi.org/10.3390/molecules27196416.

Full text
Abstract:
Conversion from superoxide (O2‒) to hydroperoxide (OOH‒) on the metal center of oxygenases and oxidases is recognized to be a key step to generating an active species for substrate oxidation. In this study, reactivity of cobalt(III)-superoxido complexes supported by facially-capping tridentate tris(3,5-dimethyl-4-X-pyrazolyl)hydroborate ([HB(pzMe2,X)3]‒; TpMe2,X) and bidentate bis(1-methyl-imidazolyl)methylborate ([B(ImN-Me)2Me(Y)]‒; LY) ligands toward H-atom donating reagent (2-hydroxy-2-azaadamantane; AZADOL) has been explored. The oxygenation of the cobalt(II) precursors give the corresponding cobalt(III)-superoxido complexes, and the following reaction with AZADOL yield the hydroperoxido species as has been characterized by spectroscopy (UV-vis, resonance Raman, EPR). The reaction of the cobalt(III)-superoxido species and a reducing reagent ([CoII(C5H5)2]; cobaltocene) with proton (trifluoroacetic acid; TFA) also yields the corresponding cobalt(III)-hydroperoxido species. Kinetic analyses of the formation rates of the cobalt(III)-hydroperoxido complexes reveal that second-order rate constants depend on the structural and electronic properties of the cobalt-supporting chelating ligands. An electron-withdrawing ligand opposite to the superoxide accelerates the hydrogen atom transfer (HAT) reaction from AZADOL due to an increase in the electrophilicity of the superoxide ligand. Shielding the cobalt center by the alkyl group on the boron center of bis(imidazolyl)borate ligands hinders the approaching of AZADOL to the superoxide, although the steric effect is insignificant.
APA, Harvard, Vancouver, ISO, and other styles
5

Campanella, Luigi, Gabriele Favero, and Mauro Tomassetti. "Superoxide Dismutase Biosensors for Superoxide Radical Analysis." Analytical Letters 32, no. 13 (January 1999): 2559–81. http://dx.doi.org/10.1080/00032719908542988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuratsuji, Tadatoshi, and Noriaki Shinomiya. "Superoxide and Superoxide Dismutase in Bronchial Asthma." Pediatrics International 29, no. 5 (October 1987): 680–85. http://dx.doi.org/10.1111/j.1442-200x.1987.tb00360.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abreu, Isabel A., José A. Rodriguez, and Diane E. Cabelli. "Theoretical Studies of Manganese and Iron Superoxide Dismutases: Superoxide Binding and Superoxide Oxidation." Journal of Physical Chemistry B 109, no. 51 (December 2005): 24502–9. http://dx.doi.org/10.1021/jp052368u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wasselin-Trupin, V., G. Baldacchino, and B. Hickel. "Détection des radicaux OH et O–2 issus de la radiolyse de l'eau par chimiluminescence résolue en temps." Canadian Journal of Physiology and Pharmacology 79, no. 2 (February 1, 2001): 171–75. http://dx.doi.org/10.1139/y00-090.

Full text
Abstract:
A new method for the detection of low concentrations of hydroxyl and superoxide radicals, formed by water radiolysis, is described in this article. The method used is the time resolved chemiluminescence. It has been performed with an electron beam delivered by a Febetron 707 accelerator. This method allows to measure hydroxyl and superoxide radical concentrations in a large range of concentrations, between 10–5 and 10–8 M.Key words: chemiluminescence, pulse radiolysis, hydroxyl radical, superoxyde radical.[Traduit par la Rédaction]
APA, Harvard, Vancouver, ISO, and other styles
9

Miyasaka, Takehiro, Kosuke Endo, Seiichi Mochizuki, and Kiyotaka Sakai. "Superoxide Sensors." Sensor Letters 4, no. 2 (June 1, 2006): 144–54. http://dx.doi.org/10.1166/sl.2006.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BORMAN, STU. "SURPRISING SUPEROXIDE." Chemical & Engineering News Archive 89, no. 4 (January 24, 2011): 11. http://dx.doi.org/10.1021/cen-v089n004.p011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fridovich, I. "Superoxide dismutases." Journal of Biological Chemistry 264, no. 14 (May 1989): 7761–64. http://dx.doi.org/10.1016/s0021-9258(18)83102-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ma, Qi, Huaqiang Fang, Wei Shang, Lei Liu, Zhengshuang Xu, Tao Ye, Xianhua Wang, Ming Zheng, Quan Chen, and Heping Cheng. "Superoxide Flashes." Journal of Biological Chemistry 286, no. 31 (June 9, 2011): 27573–81. http://dx.doi.org/10.1074/jbc.m111.241794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

James, E. R. "Superoxide dismutase." Parasitology Today 10, no. 12 (January 1994): 481–84. http://dx.doi.org/10.1016/0169-4758(94)90161-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pereira, Alice S., Pedro Tavares, Filipe Folgosa, Rui M. Almeida, Isabel Moura, and José J. G. Moura. "Superoxide Reductases." European Journal of Inorganic Chemistry 2007, no. 18 (June 2007): 2569–81. http://dx.doi.org/10.1002/ejic.200700008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Beissenhirtz, Moritz K., Frieder W. Scheller, Maria S. Viezzoli, and Fred Lisdat. "Engineered Superoxide Dismutase Monomers for Superoxide Biosensor Applications." Analytical Chemistry 78, no. 3 (February 2006): 928–35. http://dx.doi.org/10.1021/ac051465g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rodrigues, João V., Isabel A. Abreu, Diane Cabelli, and Miguel Teixeira. "Superoxide Reduction Mechanism ofArchaeoglobus fulgidusOne-Iron Superoxide Reductase†." Biochemistry 45, no. 30 (August 2006): 9266–78. http://dx.doi.org/10.1021/bi052489k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Silaghi-Dumitrescu, Radu. "Superoxide interaction with nickel and iron superoxide dismutases." Journal of Molecular Graphics and Modelling 28, no. 2 (September 2009): 156–61. http://dx.doi.org/10.1016/j.jmgm.2009.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kocabay, Ozge, Emel Emregul, Sümer Aras, and Kaan Cebesoy Emregul. "Carboxymethylcellulose–gelatin–superoxidase dismutase electrode for amperometric superoxide radical sensing." Bioprocess and Biosystems Engineering 35, no. 6 (January 18, 2012): 923–30. http://dx.doi.org/10.1007/s00449-011-0677-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Raha, Sandeep, Gillian E. McEachern, A. Tomoko Myint, and Brian H. Robinson. "Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase." Free Radical Biology and Medicine 29, no. 2 (July 2000): 170–80. http://dx.doi.org/10.1016/s0891-5849(00)00338-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ohsaka, Takeo, Yang Tian, Mieko Shioda, Shinjiro Kasahara, and Takeyoshi Okajima. "A superoxide dismutase-modified electrode that detects superoxide ion." Chemical Communications, no. 9 (April 10, 2002): 990–91. http://dx.doi.org/10.1039/b201197b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Xing, Zhanglong Huang, Tingting Hou, Jiejia Xu, Yanru Wang, Wei Shang, Tao Ye, Heping Cheng, Feng Gao, and Xianhua Wang. "Superoxide constitutes a major signal of mitochondrial superoxide flash." Life Sciences 93, no. 4 (August 2013): 178–86. http://dx.doi.org/10.1016/j.lfs.2013.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jay, David, Elizabeth J. Garcı́a, Marı́a del Carmen Avila, Eduardo Muñoz, and Roberto Gleason. "Superoxide-Superoxide Oxidoreductase Activity of the Captopril-Copper Complex." Archives of Medical Research 33, no. 2 (March 2002): 115–22. http://dx.doi.org/10.1016/s0188-4409(01)00375-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tian, Yang, Lanqun Mao, Takeyoshi Okajima, and Takeo Ohsaka. "Superoxide Dismutase-Based Third-Generation Biosensor for Superoxide Anion." Analytical Chemistry 74, no. 10 (May 2002): 2428–34. http://dx.doi.org/10.1021/ac0157270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Halliwell, B. "Superoxide and superoxide dismutase in chemistry, biology and medicine." FEBS Letters 216, no. 1 (May 25, 1987): 169. http://dx.doi.org/10.1016/0014-5793(87)80783-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lundgren, Camilla A. K., Dan Sjöstrand, Olivier Biner, Matthew Bennett, Axel Rudling, Ann-Louise Johansson, Peter Brzezinski, Jens Carlsson, Christoph von Ballmoos, and Martin Högbom. "Scavenging of superoxide by a membrane-bound superoxide oxidase." Nature Chemical Biology 14, no. 8 (June 18, 2018): 788–93. http://dx.doi.org/10.1038/s41589-018-0072-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Ting-Ting, Michio Yasunami, Elaine J. Carlson, Anne Marie Gillespie, Andrew G. Reaume, Eric K. Hoffman, Pak H. Chan, Richard W. Scott, and Charles J. Epstein. "Superoxide-Mediated Cytotoxicity in Superoxide Dismutase-Deficient Fetal Fibroblasts." Archives of Biochemistry and Biophysics 344, no. 2 (August 1997): 424–32. http://dx.doi.org/10.1006/abbi.1997.0237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shen, Jian, and J. Andrew McCammon. "Molecular dynamics simulation of superoxide interacting with superoxide dismutase." Chemical Physics 158, no. 2-3 (December 1991): 191–98. http://dx.doi.org/10.1016/0301-0104(91)87066-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Peters, T. J. "Superoxide and superoxide dismutase in chemistry, biology and medicine." Clinica Chimica Acta 163, no. 3 (March 1987): 353. http://dx.doi.org/10.1016/0009-8981(87)90255-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ewing, James F., and David R. Janero. "Microplate Superoxide Dismutase Assay Employing a Nonenzymatic Superoxide Generator." Analytical Biochemistry 232, no. 2 (December 1995): 243–48. http://dx.doi.org/10.1006/abio.1995.0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liochev, Stefan I., and Irwin Fridovich. "Copper- and Zinc-containing Superoxide Dismutase Can Act as a Superoxide Reductase and a Superoxide Oxidase." Journal of Biological Chemistry 275, no. 49 (September 25, 2000): 38482–85. http://dx.doi.org/10.1074/jbc.m007891200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Murakami, Kazuma, and Takahiko Shimizu. "Cytoplasmic superoxide radical." Communicative & Integrative Biology 5, no. 3 (May 2012): 255–58. http://dx.doi.org/10.4161/cib.19548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

YUASA, Makoto, Kenichi OYAIZU, and Hidenori MURATA. "Superoxide Dismutase Mimics." Oleoscience 6, no. 6 (2006): 307–17. http://dx.doi.org/10.5650/oleoscience.6.307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Simovic, Misho O., Martin J. D. Bonham, Fikri M. Abu-Zidan, and John A. Windsor. "Manganese Superoxide Dismutase." Pancreas 15, no. 1 (July 1997): 78–82. http://dx.doi.org/10.1097/00006676-199707000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shaked, Yeala, and Andrew Rose. "Seas of Superoxide." Science 340, no. 6137 (June 6, 2013): 1176–77. http://dx.doi.org/10.1126/science.1240195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

&NA;. "Superoxide dismutase cream." Inpharma Weekly &NA;, no. 796 (July 1991): 6. http://dx.doi.org/10.2165/00128413-199107960-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cai, Jiyang, and Dean P. Jones. "Superoxide in Apoptosis." Journal of Biological Chemistry 273, no. 19 (May 8, 1998): 11401–4. http://dx.doi.org/10.1074/jbc.273.19.11401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rosenthal, Rosalind A., Susan R. Doctrow, and Wyeth B. Callaway. "Superoxide Dismutase Mimics." Antioxidants & Redox Signaling 14, no. 6 (March 15, 2011): 1173. http://dx.doi.org/10.1089/ars.2010.3758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Turner, Craig P., Ashley M. Toye, and Owen T. G. Jones. "Keratinocyte Superoxide Generation." Free Radical Biology and Medicine 24, no. 3 (February 1998): 401–7. http://dx.doi.org/10.1016/s0891-5849(97)00270-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Salvemini, Daniela, Carolina Muscoli, Dennis P. Riley, and Salvatore Cuzzocrea. "Superoxide Dismutase Mimetics." Pulmonary Pharmacology & Therapeutics 15, no. 5 (October 2002): 439–47. http://dx.doi.org/10.1006/pupt.2002.0374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nozik-Grayck, Eva, Hagir B. Suliman, and Claude A. Piantadosi. "Extracellular superoxide dismutase." International Journal of Biochemistry & Cell Biology 37, no. 12 (December 2005): 2466–71. http://dx.doi.org/10.1016/j.biocel.2005.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Brand, Martin D., Julie A. Buckingham, Telma C. Esteves, Katherine Green, Adrian J. Lambert, Satomi Miwa, Michael P. Murphy, Julian L. Pakay, Darren A. Talbot, and Karim S. Echtay. "Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production." Biochemical Society Symposia 71 (March 1, 2004): 203–13. http://dx.doi.org/10.1042/bss0710203.

Full text
Abstract:
Mitochondria are a major source of superoxide, formed by the one-electron reduction of oxygen during electron transport. Superoxide initiates oxidative damage to phospholipids, proteins and nucleic acids. This damage may be a major cause of degenerative disease and aging. In isolated mitochondria, superoxide production on the matrix side of the membrane is particularly high during reversed electron transport to complex I driven by oxidation of succinate or glycerol 3-phosphate. Reversed electron transport and superoxide production from complex I are very sensitive to proton motive force, and can be strongly decreased by mild uncoupling of oxidative phosphorylation. Both matrix superoxide and the lipid peroxidation product 4-hydroxy-trans-2-nonenal can activate uncoupling through endogenous UCPs (uncoupling proteins). We suggest that superoxide releases iron from aconitase, leading to a cascade of lipid peroxidation and the release of molecules such as hydroxy-nonenal that covalently modify and activate the proton conductance of UCPs and other proteins. A function of the UCPs may be to cause mild uncoupling in response to matrix superoxide and other oxidants, leading to lowered proton motive force and decreased superoxide production. This simple feedback loop would constitute a self-limiting cycle to protect against excessive superoxide production, leading to protection against aging, but at the cost of a small elevation of respiration and basal metabolic rate.
APA, Harvard, Vancouver, ISO, and other styles
42

Martínez, Alejandra, Carolina Prolo, Damián Estrada, Natalia Rios, María Noel Alvarez, María Dolores Piñeyro, Carlos Robello, Rafael Radi, and Lucía Piacenza. "Cytosolic Fe-superoxide dismutase safeguardsTrypanosoma cruzifrom macrophage-derived superoxide radical." Proceedings of the National Academy of Sciences 116, no. 18 (April 12, 2019): 8879–88. http://dx.doi.org/10.1073/pnas.1821487116.

Full text
Abstract:
Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). DuringT. cruziinvasion to macrophages, superoxide radical (O2•−) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work,T. cruzicytosolic Fe-SODB overexpressers (pRIBOTEX–Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox−/−macrophages, underscoring the role of O2•−in parasite killing. Herein, we studied the entrance of O2•−and its protonated form, perhydroxyl radical [(HO2•); pKa= 4.8], toT. cruziat the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2•−and HO2•were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2•−permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2•−detection in the internalized parasite. Importantly, O2•−detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2•−or during macrophage infections. Other mechanisms of O2•−entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2•−detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB–overexpressing parasites, supporting the role of the cytosolic O2•−-catabolizing enzyme as a virulence factor for CD.
APA, Harvard, Vancouver, ISO, and other styles
43

Nakazawa, H., K. Ichimori, Y. Shinozaki, H. Okino, and S. Hori. "Is superoxide demonstration by electron-spin resonance spectroscopy really superoxide?" American Journal of Physiology-Heart and Circulatory Physiology 255, no. 1 (July 1, 1988): H213—H215. http://dx.doi.org/10.1152/ajpheart.1988.255.1.h213.

Full text
Abstract:
A recent study has indicated that the generation of an oxygen radical in freeze-clamped myocardium on reperfusion can be directly demonstrated using electron-spin resonance spectroscopy (ESR). However, the results need to be analyzed with caution, since artifactual radicals are misleading problems common to this method. To test whether that reported superoxide is truly the biologically existing radical or an artifactual radical, we performed experiments using isolated, perfused rat and rabbit hearts and open-chest canine hearts subjected to ischemia/reperfusion. Radicals were freeze trapped at 77 degrees K, and ESR measurements were made. The ESR spectra exhibited four free radicals. Among these, two radicals which had been previously claimed as superoxide and a nitrogen-centered radical were shown as mechanically yielded artifactual radicals. These were produced by pulverization of the frozen sample. In artifact-free samples, superoxide could not be detected. The radicals native to the myocardium were identified as coenzyme Q10-. and another radical the species of which remains unclear.
APA, Harvard, Vancouver, ISO, and other styles
44

Marklund, Stefan L. "Ceruloplasmin, extracellular-superoxide dismutase, and scavenging of superoxide anion radicals." Journal of Free Radicals in Biology & Medicine 2, no. 4 (January 1986): 255–60. http://dx.doi.org/10.1016/s0748-5514(86)80007-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Soteras, Fernando, Ana Algerich, Maite Sanchez, Elena Piazuelo, Jimenez Pilar, Francisco Esteva, Angel Ferrandez, and Angel Lanas. "Superoxide anion and superoxide dismutase in human gastroesophageal reflux diseases." Gastroenterology 118, no. 4 (April 2000): A225. http://dx.doi.org/10.1016/s0016-5085(00)82973-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fridovich, Irwin. "Superoxide Anion Radical (O·̄2), Superoxide Dismutases, and Related Matters." Journal of Biological Chemistry 272, no. 30 (July 25, 1997): 18515–17. http://dx.doi.org/10.1074/jbc.272.30.18515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Endo, Kosuke, Takehiro Miyasaka, Seiichi Mochizuki, Satoka Aoyagi, Naoyuki Himi, Hiroko Asahara, Katsuhiko Tsujioka, and Kiyotaka Sakai. "Development of a superoxide sensor by immobilization of superoxide dismutase." Sensors and Actuators B: Chemical 83, no. 1-3 (March 2002): 30–34. http://dx.doi.org/10.1016/s0925-4005(01)01024-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Emerit, I., F. Garban, J. Vassy, A. Levy, P. Filipe, and J. Freitas. "Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase." Proceedings of the National Academy of Sciences 93, no. 23 (November 12, 1996): 12799–804. http://dx.doi.org/10.1073/pnas.93.23.12799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Skalerič, Uroš, Carl M. Manthey, Stephan E. Mergenhagen, Boris Gašpirc, and Sharon M. Wahl. "Superoxide release and superoxide dismutase expression by human gingival fibroblasts." European Journal of Oral Sciences 108, no. 2 (April 2000): 130–35. http://dx.doi.org/10.1034/j.1600-0722.2000.90771.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Brines, Lisa M., and Julie A. Kovacs. "Understanding the Mechanism of Superoxide Reductase Promoted Reduction of Superoxide." European Journal of Inorganic Chemistry 2007, no. 1 (January 2007): 29–38. http://dx.doi.org/10.1002/ejic.200600461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography