Academic literature on the topic 'Superoxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Superoxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Superoxide"

1

Fridovich, Irwin. "Superoxide and superoxide dismutases." Free Radical Biology and Medicine 15, no. 5 (November 1993): 472. http://dx.doi.org/10.1016/0891-5849(93)90188-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fridovich, Irwin. "Superoxide Radical and Superoxide Dismutases." Annual Review of Biochemistry 64, no. 1 (June 1995): 97–112. http://dx.doi.org/10.1146/annurev.bi.64.070195.000525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sheng, Yuewei, Isabel A. Abreu, Diane E. Cabelli, Michael J. Maroney, Anne-Frances Miller, Miguel Teixeira, and Joan Selverstone Valentine. "Superoxide Dismutases and Superoxide Reductases." Chemical Reviews 114, no. 7 (April 2014): 3854–918. http://dx.doi.org/10.1021/cr4005296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nishiura, Toshiki, Takehiro Ohta, Takashi Ogura, Jun Nakazawa, Masaya Okamura, and Shiro Hikichi. "The Conversion of Superoxide to Hydroperoxide on Cobalt(III) Depends on the Structural and Electronic Properties of Azole-Based Chelating Ligands." Molecules 27, no. 19 (September 28, 2022): 6416. http://dx.doi.org/10.3390/molecules27196416.

Full text
Abstract:
Conversion from superoxide (O2‒) to hydroperoxide (OOH‒) on the metal center of oxygenases and oxidases is recognized to be a key step to generating an active species for substrate oxidation. In this study, reactivity of cobalt(III)-superoxido complexes supported by facially-capping tridentate tris(3,5-dimethyl-4-X-pyrazolyl)hydroborate ([HB(pzMe2,X)3]‒; TpMe2,X) and bidentate bis(1-methyl-imidazolyl)methylborate ([B(ImN-Me)2Me(Y)]‒; LY) ligands toward H-atom donating reagent (2-hydroxy-2-azaadamantane; AZADOL) has been explored. The oxygenation of the cobalt(II) precursors give the corresponding cobalt(III)-superoxido complexes, and the following reaction with AZADOL yield the hydroperoxido species as has been characterized by spectroscopy (UV-vis, resonance Raman, EPR). The reaction of the cobalt(III)-superoxido species and a reducing reagent ([CoII(C5H5)2]; cobaltocene) with proton (trifluoroacetic acid; TFA) also yields the corresponding cobalt(III)-hydroperoxido species. Kinetic analyses of the formation rates of the cobalt(III)-hydroperoxido complexes reveal that second-order rate constants depend on the structural and electronic properties of the cobalt-supporting chelating ligands. An electron-withdrawing ligand opposite to the superoxide accelerates the hydrogen atom transfer (HAT) reaction from AZADOL due to an increase in the electrophilicity of the superoxide ligand. Shielding the cobalt center by the alkyl group on the boron center of bis(imidazolyl)borate ligands hinders the approaching of AZADOL to the superoxide, although the steric effect is insignificant.
APA, Harvard, Vancouver, ISO, and other styles
5

Campanella, Luigi, Gabriele Favero, and Mauro Tomassetti. "Superoxide Dismutase Biosensors for Superoxide Radical Analysis." Analytical Letters 32, no. 13 (January 1999): 2559–81. http://dx.doi.org/10.1080/00032719908542988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuratsuji, Tadatoshi, and Noriaki Shinomiya. "Superoxide and Superoxide Dismutase in Bronchial Asthma." Pediatrics International 29, no. 5 (October 1987): 680–85. http://dx.doi.org/10.1111/j.1442-200x.1987.tb00360.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abreu, Isabel A., José A. Rodriguez, and Diane E. Cabelli. "Theoretical Studies of Manganese and Iron Superoxide Dismutases: Superoxide Binding and Superoxide Oxidation." Journal of Physical Chemistry B 109, no. 51 (December 2005): 24502–9. http://dx.doi.org/10.1021/jp052368u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wasselin-Trupin, V., G. Baldacchino, and B. Hickel. "Détection des radicaux OH et O–2 issus de la radiolyse de l'eau par chimiluminescence résolue en temps." Canadian Journal of Physiology and Pharmacology 79, no. 2 (February 1, 2001): 171–75. http://dx.doi.org/10.1139/y00-090.

Full text
Abstract:
A new method for the detection of low concentrations of hydroxyl and superoxide radicals, formed by water radiolysis, is described in this article. The method used is the time resolved chemiluminescence. It has been performed with an electron beam delivered by a Febetron 707 accelerator. This method allows to measure hydroxyl and superoxide radical concentrations in a large range of concentrations, between 10–5 and 10–8 M.Key words: chemiluminescence, pulse radiolysis, hydroxyl radical, superoxyde radical.[Traduit par la Rédaction]
APA, Harvard, Vancouver, ISO, and other styles
9

Miyasaka, Takehiro, Kosuke Endo, Seiichi Mochizuki, and Kiyotaka Sakai. "Superoxide Sensors." Sensor Letters 4, no. 2 (June 1, 2006): 144–54. http://dx.doi.org/10.1166/sl.2006.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BORMAN, STU. "SURPRISING SUPEROXIDE." Chemical & Engineering News Archive 89, no. 4 (January 24, 2011): 11. http://dx.doi.org/10.1021/cen-v089n004.p011.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Superoxide"

1

Dufernez, Fabienne. "Les superoxyde dismutases des protistes : caractérisation et origine phylogénétique." Lille 2, 2005. http://www.theses.fr/2005LIL2S030.

Full text
Abstract:
Les organismes aérobies ont développé des mécanismes pour se protéger des attaques des espèces activées de l'oxygène produites lors du métabolisme cellulaire. La superoxyde dismutase (SOD) est une métalloenzyme du système de défense anti-oxydant. Elle catalyse la dismutation de l'anion superoxyde en peroxyde d'hydrogène. Les SOD se divisent en 2 grandes familles qui diffèrent fondamentalement d'un point de vue structural : les SOD qui utilisent simultanément le cuivre et le zinc comme métaux cofacteurs (Cu/Zn-SOD) et les SOD utilisant soit le fer (FeSOD) soit le manganèse (MnSOD) comme métal cofacteur. Sur la base d'un alignement de 261 séquences de SOD et de 12 structures cristallographiques de SOD à fer et à manganèse, nous avons analysé les conservations en terme de structure et de séquence parmi les SOD à fer et à manganèse. Les résidus caractéristiques de la fonction enzymatique, de la conformation en dimère ou tétramère et de la spécificité de métal ont été identifiés. Toutes ces données nous ont été utiles lors de nos études de SOD de nombreux protozoaires. Les protozoaires parasites étudiés jusqu'à présent ont ,en effet, la particularité de ne contenir qu'un seul type de SOD, des FeSOD qui différent des Cu/Zn SOD et SOD tétramérique à manganèse présentes chez l'humain. Ceci fait de la SOD à fer des protistes une cible thérapeutique potentielle. Chez Trypanosoma brucei, agent de la maladie du sommeil, nous avons identifié 4 gènes de SOD après interrogation des banques de données du programme de séquençage : soda, sodb1 et sodb2 ainsi que sodc nouvellement identifié. Ces 4 gènes correspondaient à des SOD dimériques à fer. Les protéines recombinantes correspondantes ont été produites et se sont révélées actives. Des modélisations structurales ont été réalisées par homologie avec des structures cristallographiques connues et ont montrées une grande similarité de structure entre ces FeSOD. Afin de déterminer la localisation cellulaire, nous avons réalisé des expériences de fusion de chacune de ces enzymes avec la GFP, ces constructions ont été transfectées dans des cellules procycliques de trypanosome. Nous avons alors mis en évidence la localisation mitochondriale des 2 enzymes FeSODA et FeSODC et la présence des FeSODB dans le cytoplasme et les glycosomes, localisation confirmée par un marquage sur fractions cellulaires : la FeSODB1 étant plutôt cytosolique et la FeSODB2 plutôt glycosomale. Chez le dinoflagellé Crypthecodinium cohnii nous n'avons retrouvé que des activités SOD correspondantes à des SOD à fer. Une famille multigénique codant pour des FeSOD a été caractérisée. La protéine recombinante correspondante à un gène complet de FeSOD dimérique a été produite et s'est révelée active. Les SOD d'un second prostiste parasite Trichomonas vaginalis ont également été étudiées. T. Vaginalis est responsable de la trichomoniase humaine, la maladie sexuellement transmissible la plus répandue à travers le monde. La recherche dans les bases de données du programme de séquençage du parasite nous a permis d'identifier 7 gènes de SOD chez ce parasite. Ces SOD comportent toutes les caractéristiques des SOD à fer dimériques et sont actives lorsqu'on les produit sous forme de protéines recombinantes. La protéine recombinante SOD6 de T. Vaginalis a été également purifiée et la structure cristallographique obtenue. Ces données sont essentielles pour la conception éventuelle d'inhibiteurs. Toutes ces séquences de FeSOD ont été incluses dans une large analyse phylogénétique afin de proposer une origine pour les FeSOD des protistes. Cette analyse confirme l'origine bactérienne de ces enzymes via des transferts de gènes de bactéries vers les protistes, suivi de duplications successives.
APA, Harvard, Vancouver, ISO, and other styles
2

Kolahi-Ahari, Ali. "A study of superoxide dismutase activity and superoxide production in kiwifruit." Thesis, University of Canterbury. Biological Sciences, 2006. http://hdl.handle.net/10092/1343.

Full text
Abstract:
The activity of superoxide dismutase (SOD) was determined in three kiwifruit (Actinidia) species including A. deliciosa, A. chinensis, and A. arguta. Among the species tested, the highest SOD activity was found in crude extracts prepared from fruit tissues of A. deliciosa. The highest enzyme activity was localized in seed, followed by locules, core and outer pericarp (OP). SOD activity in crude extract of whole fruit remained stable for at least one month when stored at -20℃. The effect of synthetic protease inhibitors (PI) on SOD activity was investigated. Supplementing crude kiwifruit extracts with PI improved SOD activity in freshly prepared extracts, and in extracts stored at 4℃, but had no effect on those stored at -20℃. Among the PI used, iodoacetamide (an inhibitor of cysteine proteases, for example, actinidin which is a principal protease found in kiwifruit) and PMSF (an inhibitor of serine proteases), had the most and least influence on SOD activity in crude kiwifruit extracts, respectively. There was a significant increase in SOD activity in kiwifruit (that were relatively firm) when the fruits were stored at low temperature (4℃). An increase in SOD activity was also correlated with a decrease in fruit firmness. Staining fruit tissues with nitroblue tetrazolium (NBT) provided evidence for stress-induced superoxide generation in kiwifruit tissues. Taken together, the changes in SOD activity and the capacity for stress-inducible superoxide production in post-harvest kiwifruit suggest that SOD might play a fundamental role in the storage life/ripening of kiwifruit.
APA, Harvard, Vancouver, ISO, and other styles
3

Flamm, Hubert [Verfasser], and Gerald A. [Akademischer Betreuer] Urban. "Electrochemical microsensors for superoxide monitoring in cell culture = Elektrochemische Mikrosensoren fuer Superoxid-Monitoring in Zellkultur." Freiburg : Universität, 2014. http://d-nb.info/1123482217/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kitagawa, Terutaka Terence. "Biomimetic modeling of superoxide reductase /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/11558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gibson, N. "Towards a spintrap for superoxide." Thesis, University of Aberdeen, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.592486.

Full text
Abstract:
Several approaches to the synthesis of 1-pyrroline 1-oxides bearing an ester or alkyl halide substituent at 3-C were investigated. These compounds were sought as potentially useful spintraps for the superoxide radical anion. 5,5-Dimethyl-l-pyrroline 1-oxide (DMPO), 3,5,5-trimethyl-l-pyiroline 1-oxide (MesPPO), 2,5,5-trimethyl-l-pyrroline 1-oxide (TMPO), 4-phenyl-5,5-dimethyl-l-pyrroline 1-oxide, 2-phenyl-5,5-dimethyl-l-pyrroline 1-oxide and 2,3,5,5-Tetramethyl-3-Hydroxy-l-pyrToline 1-oxide were prepared by standard procedures. 3-Phenyl-5,5-Dimethyl-l-pyrroline 1-oxide (DMPPO) was isomerised to 3-Phenyl-3-Hydroxy-5f5-Dimethyl-1-pyrroline upon treatment with aqueous acid. This process was investigated by 1H nmr spectroscopy. DMPPO was rapidly destroyed by aqueous base and was isomerised to 3-phenyl-5,5-dimethyl-2-pyrrolidinone upon treatment with non-aqueous base. The alkylation and acylation of the enamines of 4-methyl-4-nitropentanal and 2,4-dimethyl-4-nitropentanal was slow in the absence of a Lewis acid catalyst. However the corresponding 2-dimethoxymethylaldehydes were obtained from the enamines upon treatment with stannic chloride and trimethylorthoformate and were selectively reduced to the corresponding 2-dimethoxymethyl-4-hydroxylaminopentan-l-ols. The acid-catalysed de-protection of these formyl acetals did not result in the formation of the expected 3-hydroxymethyl-1-pyrroline 1-oxides. DMPO and DMPPO reacted as an oxygen nucleophile when treated with ethyl chloroformate and acid halides in the presence of either sodium hydride or lithium diisopropylamide and gave 3-acyloxy-l-pyrrolines as products. No 3-keto-l-pyrroline 1-oxides, formed from reaction at 3-C, were isolated although some evidence of their formation in small yield was obtained from esr spectroscopy. No benzylation was observed when either DMPO or DMPPO was treated with benzyl bromide and LDA. Benzoyla-tion of MesPPO gave 3-benzoyloxy-5f5-dimethyl-l-pyrroline. Benzoylation of 4-phenyl-5,5-dimethyl-1-pyrroline 1-oxide gave 2-benzoyloxy-4-phenyl-5,5-dimethyl-pyrrolidine. Benzoylation of 2,3,5,5-Tetramethyl-3-Hydroxy-l-pyrroluie 1-oxide resulted in the dimeric tricyclic acyloxyamine 5,6,8,8^',5 -heptamethyl-3'-hydroxy-6, 1 '-dibenzoyloxy-2-oxa-1 -azabicyclo[3.1.0]octane-3 -spiro-2' -py rrolidine. The peroxyacid oxidation of 3-acyloxy-l-pyrrolines bearing one substituent at 3-C gave the corresponding oxaziridines in good yield and in enantiomeric excesses between 62 and 100%. Increasing the size of a co substituent at 3-C resulted in a corresponding decrease in the selectivity of the oxidation. The oxaziridines were unexpectedly resistant to rearrangement in ethanolic hydrogen chloride. 2,2-Dimethyl-4-benzoyloxy-6-oxa-l-azabicyclo[3.1.0]hexane isomerised to 3-benzoyloxy-5,5-dimethyl-2-pyrrolidinone when heated at reflux in xylene.
APA, Harvard, Vancouver, ISO, and other styles
6

Olofsson, Eva. "Superoxide dismutase 1 and cataract." Doctoral thesis, Umeå : Umeå universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-21032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sinaceur, Jamal Eddine. "Importance des dérivés réduits de l'oxygène dans l'intoxication alcoolique chez le rat : rôle de la desferrioxamine /." Paris : la Documentation française, 1987. http://catalogue.bnf.fr/ark:/12148/cb34926442c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vinatier, Virginie. "Exploration de la voie péroxynitrite : nouveaux donneurs de NO, étude des superoxyde dimutases à fer et application à la conception d’inhibiteurs." Toulouse 3, 2007. http://www.theses.fr/2007TOU30008.

Full text
Abstract:
Ce travail aborde divers aspects de la chimie du peroxynitrite et de ses précurseurs , le superoxyde et le monoxyde d’azote. Plusieurs donneurs de NO dérivés du SIN-1 ont été synthétisés et étudiés dans le but de diminuer la quantité de péroxynitrite formé pendant la décomposition et d’augmenter la biodisponibilité du NO. Les superoxyde dismutases à fer, enzymes protégeant les protozoaires du stress oxydant, des parasites Plasmodium falciparum, Trypanosoma cruzi et Trypanosoma brucei ont été surexprimées et caractérisées afin de découvrir de nouveaux composés antiparasitaires. La structure de ces enzymes partiellement inactivées par la nitration du résidu tyrosine 34 a été étudiée et modélisée tandis que plusieurs stratégies ont été utilisées pour la conception d’inhibiteurs. Les modes de liaison de ces composés ont été étudiés par amarrage moléculaire
Peroxynitrite is the product of the very fast reaction between nitrogen oxide and superoxide. This work tackles several sides of the chemistry of these compounds. Several SIN-1 derivatives with NO releasing properties were synthesised and studied to reduce peroxynitrite production and thus increase the NO availability. Iron Superoxide Dismutases (SOD) are enzymes that protect protozoans from the oxidative stress. Enzymes from parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei were overexpressed and characterised in order to find some new compounds with antiparasitic activity. Iron SODs are partially inactivated by nitration of the residue tyrosine 34 by peroxynitrite. The structure of the nitrated enzyme was studied and modelised. Several methods of “de novo” conception of inhibitors are descried and the binding modes of these compounds were studied by docking experiments
APA, Harvard, Vancouver, ISO, and other styles
9

Parker, Michael William. "Structural studies on manganese superoxide dismutase." Thesis, University of Oxford, 1985. https://ora.ox.ac.uk/objects/uuid:b8fff51f-1e2f-41b1-baff-4e95b499f0de.

Full text
Abstract:
Superoxide dismutases are widely distributed enzymes which catalyse the dismutation of superoxide radicals to dioxygen and hydrogen peroxide and are considered to be an important agent of an organism's defence against oxygen toxicity. The crystallization and low resolution structure determination of manganese superoxide dismutase (E.G. 1.15.1.1) from Bacillus stearothermophiluB is described. The enzyme crystallized in space group P21212 with two monomers per asymmetric unit and cell dimensions of ̲a=72.2Å, ̲b=111.1Å and ̲c=51.1Å. The crystals diffracted to beyond 2Å resolution but were fragile and prone to cell dimension changes. The cell dimension variability was overcome to some extent by crossllnking with glutaraldehyde. An electron density map was calculated to 6Å resolution initially by the method of multiple isomorphous replacement using data obtained from six heavy atom derivatives. The final map was calculated from single isomorphous replacement data using a map modification procedure. The fitting of an alpha carbon model of iron superoxide dismutase into the map suggested the iron and manganese enzymes are structurally related. The position of the metal atoms in the model solved difference Patterson maps calculated from data collected from a manganese-free crystal and from anomalous dispersion data. The latter data were collected using synchrotron radiation tuned close to the manganese absorption edge. The low resolution map and the availability of 2.4Å resolution native data paves the way for higher resolution X-ray studies of the crystals. A detailed analysis of amino acid sequences has been carried out on the various metal-containing superoxide dismutases. The results indicate that the enzymes can be classified according to their metal cofactor. The distribution and homology of the enzyme classes supports the endosymbiotic theory of the origin of cell organelles. The presence of the copper/zinc enzyme in Photobacterium leiognathi is shown to support the case for a eukaryote to prokaryote gene transfer.
APA, Harvard, Vancouver, ISO, and other styles
10

Lewis, Elizabeth A. "Functional models of manganese superoxide dismutases." Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247034.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Superoxide"

1

1933-, Asada Kozi, and Yoshikawa Toshikazu, eds. Frontiers of reactive oxygen species in biology and medicine: Proceedings of the 6th International Conference on Superoxide and Superoxide Dismutase, Kyoto, Japan, October 11-15, 1993. Amsterdam: Excerpta Medica, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Conference on Superoxide and Superoxide Dismutase (4th 1985 Rome, Italy). Superoxide and superoxide dismutase in chemistry, biology, and medicine: Proceedings of the 4th International Conference on Superoxide and Superoxide Dismutase, held in Rome, Italy, 1-6 September 1985. Amsterdam: Elsevier Science Publishers, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmed Mohamed Labib Abd El Kafy. Interactions between oligoamines and superoxide anion. Birmingham: Aston University. Department of Pharmaceutical Sciences, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Afanasʹev, Igor B. Superoxide ion: Chemistry and biological implications. Boca Raton: CRC Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Seifert, Roland, and Günter Schultz. The Superoxide-Forming NADPH Oxidase of Phagocytes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53663-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ingrid, Emerit, Packer Lester, Auclair Christian, and Society for Free Radical Research., eds. Antioxidants in therapy and preventive medicine. New York: Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Joyce, Caroline. Superoxide dismutase gene expression in copper deficient rats. [S.l: The Author], 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sinaceur, Jamal Eddine. Importance des dérivés réduits de l'oxygène dans l'intoxication alcoolique chez le rat: Rôle de la desferrioxamine. Paris: La Documentation française, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murphy, Loretta Mary. XaAFS and EPR studies on Bovine Cu, Zn Superoxide dismutase. Manchester: University of Manchester, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kang yang hua jiao su zhi mu SOD. Taibei Shi: Yuan qi zhai chu ban she you xian gong si, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Superoxide"

1

Gooch, Jan W. "Superoxide." In Encyclopedic Dictionary of Polymers, 926. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bährle-Rapp, Marina. "Superoxide Dismutase." In Springer Lexikon Kosmetik und Körperpflege, 539. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, Anne-Frances. "Superoxide Dismutases." In Encyclopedia of Biophysics, 2517–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hassan, Hosni Moustafa. "Superoxide Dismutases." In Novartis Foundation Symposia, 125–42. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720622.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schomburg, Dietmar, and Dörte Stephan. "Superoxide dismutase." In Enzyme Handbook, 853–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57942-4_179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cass, A. E. G. "Superoxide Dismutases." In Metalloproteins, 121–56. London: Palgrave Macmillan UK, 1985. http://dx.doi.org/10.1007/978-1-349-06372-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ingraham, Llyod L., and Damon L. Meyer. "Superoxide Ion." In Biochemistry of Dioxygen, 45–73. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2475-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gooch, Jan W. "Superoxide Dismutase." In Encyclopedic Dictionary of Polymers, 926. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fridovich, Irwin. "Superoxide Dismutases." In Advances in Enzymology - and Related Areas of Molecular Biology, 35–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470122860.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fridovich, Irwin. "Superoxide Dismutases." In Advances in Enzymology - and Related Areas of Molecular Biology, 61–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470123041.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Superoxide"

1

Song, Hongwei, and Olusegun J. Ilegbusi. "Superoxide Radical Transport Through Nanoheterogeneous Biosensor Film." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43125.

Full text
Abstract:
A mathematical model is developed to describe the transport phenomena and electrochemical reaction kinetics during amperometric measurement of superoxide radical concentration using ZnO-polymer nanocomposite sensor. This model assumes a logarithmic normal distribution for the nanoparticles immobilized in the polymer matrix and an empirical relation for the diffusion coefficient of superoxide radicals as a function of pore volume fraction. A kinetic with secondary order rate constant is used to represent the electrochemical reactions of electron transfer from the superoxide radicals to nanoparticles. The predicted results include the effect of diffusion coefficient on concentration and electrical conductivity.
APA, Harvard, Vancouver, ISO, and other styles
2

TERANISHI, KATSUNORI. "RED-CHEMILUMINESCENT PROBES FOR DETECTING SUPEROXIDE ANIONS." In Chemistry, Biology and Applications. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770196_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meoni, E., EA Regan, J. Luby, RP Bowler, and JD Crapo. "Extracellular Superoxide Dismutase in COPD and Healthy Smokers." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SUZUKI, N., T. NAGAI, H. HATATE, I. MIZUMOTO, B. YODA, T. ITAMI, Y. TAKAHASHI, T. NOMOTO, N. KANAMORI, and A. KOZAWA. "ANTIOXIDATIVE ACTIVITIES OF SOME DIETARY FIBERS AGAINST SUPEROXIDE." In Bioluminescence and Chemiluminescence - Progress and Current Applications - 12th International Symposium on Bioluminescence (BL) and Chemiluminescence (CL). WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776624_0066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yintao, Hao He, Fan Shi, Ming-lie Hu, and Chingyue Wang. "Superoxide flashes dominate mitochondrial lesion stimulated by femtosecond laser." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/acpc.2014.af4a.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ganguly, K., M. Depner, SC Wesselkamper, M. Schreiber, F. Gao, TD Oury, EV Mutius, M. Kabesch, GD Leikauf, and H. Schulz. "Superoxide Dismutase 3, Extracellular (SOD3) Variants and Lung Function." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Supinski, Gerald S., Lin Wang, Alexander Alimov, Xiao-Hong Song, and Leigh Ann P. Callahan. "CPLA2 Modulates Cytokine Induced Superoxide Generation And Calpain Activation." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a2715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dinges, Warren L., John C. Horrocks, and Thomas J. Lonergan. "Regeneration technique for basic hydrogen peroxide using potassium superoxide." In OE/LASE '94, edited by William E. McDermott. SPIE, 1994. http://dx.doi.org/10.1117/12.172720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MASUI, S., T. MAJIMA, S. ITO-KUWA, K. NAKAMURA, and S. AOKI. "VISUALIZATION OF SUPEROXIDE GENERATED FROM COLONIES OF CANDIDA ALBICANS." In Proceedings of the 13th International Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702203_0073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reutov, V. P., and E. G. Sorokina. "NEUROLOGICAL DISORDERS AND OTHER KNOWN PATHOLOGIES DUE TO NITRIC OXIDE AND SUPEROXIDE CYCLING DISTURBANCES." In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.276-301.

Full text
Abstract:
The article discusses the mechanisms of development of a typical pathological process, oxi-dative and nitrosative stress, which underlie many neurological disorders and other known diseases. Cycles of nitric oxide and superoxide anion-radical under physiological conditions do not allow the development of pathological changes in the vital systems of the body. How-ever, when they are damaged, the main regulatory mechanisms are violated, and “dysregula-tory pathology” sets in (G.N. Kryzhanovsky), due to the formation of extremely active com-pounds - nitrogen dioxide (NO2), OH-radicals and peroxynitrites, which, after protonation, decompose again with the formation of radicals NO2 and OH radicals. It is hypothesized that it is these mechanisms that disrupt the cycles of nitric oxide and the superoxide anion radical that underlie the development of a typical pathological process.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Superoxide"

1

J. S. Bullock. Analysis of Potassium Superoxide/Kerosene Situation. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/774749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Champaigne, Rachel. The Role of Mitochondrial Superoxide Dismutase (SOD2) During a Coxiella Burnetii Infection. Portland State University Library, January 2015. http://dx.doi.org/10.15760/honors.168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mozgovaya, E. E., S. A. Bedina, I. A. Zborovskaya, A. S. Trofimenko, M. A. Mamus, E. A. Tikhomirova, and S. S. Spitsina. XANTHINE OXIDOREDUCTASE AND SUPEROXIDE DISMUTASE ACTIVITIES OF BLOOD PLASMA DEPENDING ON TYPE OF SYSTEMIC SCLEROSIS. "PLANET", 2019. http://dx.doi.org/10.18411/978-5-907192-54-6-2019-xxxvi-120-127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bedina, S. A., E. E. Mozgovaya, I. A. Zborovskaya, A. S. Trofimenko, and E. G. Korenskaya. ENZYMATIC PROFILE OF BLOOD PLASMA IN RHEUMATOID ARTHRITIS: ACTIVITY OF XANTHINE OXIDASE, XANTHINE DEHYDROGENASE AND SUPEROXIDE DISMUTASE. Планета, 2018. http://dx.doi.org/10.18411/978-5-907109-24-7-2018-xxxv-54-61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bedina, S. A., E. E. Mozgovaya, A. S. Trofimenko, S. S. Spitsina, M. A. Mamus, and E. A. Tikhomirova. ENZYMATIC PROFILE OF BLOOD PLASMA IN SYSTEMIC SCLEROSIS: ACTIVITY OF XANTHINE OXIDASE, XANTHINE DEHYDROGENASE AND SUPEROXIDE DISMUTASE. "PLANET", 2019. http://dx.doi.org/10.18411/978-5-907192-54-6-2019-xxxvi-38-45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bedina, S. A., E. E. Mozgovaya, A. S. Trofimenko, N. M. Devyataeva, M. A. Mamus, S. S. Spitsyna, and E. A. Tikhomirova. XANTHINE OXIDASE, XANTHINE DEHYDROGENASE AND SUPEROXIDE DISMUTASE ACTIVITIES OF BLOOD PLASMA DEPENDING ON CLINICAL FEATURES OF SYSTEMIC SCLEROSIS. Academy of Natural Knowledge, 2019. http://dx.doi.org/10.18411/1996-3955-2019-10-268-272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Plymate, Stephen R. Superoxide Dismutase and Transcription Factor sox9 as Mediators of Tumor Suppression by mac25 (IGFBP-rp1) in Prostate Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada463476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shopova, Elena, Stefani Dimitrova, Dessislava Todorova, and Iskren Sergiev. Comparative Study of Singlet Oxygen and Superoxide Radical Effects on Endogenous Polyamines and Diamine and Polyamine Oxidase Activities in Young Pea Seedlings. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2020. http://dx.doi.org/10.7546/crabs.2020.08.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pesis, Edna, Elizabeth J. Mitcham, Susan E. Ebeler, and Amnon Lers. Application of Pre-storage Short Anaerobiosis to Alleviate Superficial Scald and Bitter Pit in Granny Smith Apples. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7593394.bard.

Full text
Abstract:
There is increased demand for high quality fruit produced and marketed with reduced chemical inputs to minimize toxic effects on human health and the environment. Granny Smith (GS) apple quality is reduced by two major physiological disorders, superficial scald and bitter pit (BP). These disorders cause great loss to apple growers worldwide. Superficial scald is commonly controlled by chemical treatments, mainly the antioxidant diphenylamine (DPA) and/or the ethylene action inhibitor, 1-methylcyclopropene (1–MCP). Both chemicals are ineffective in controlling bitter pit incidence. We proposed to investigate the beneficial use of non-chemical, abiotic stress with low O2 (LO2) applied for 10d at 20°C on GS apple fruit. During the project we expanded the treatment to more apple cultivars, Golden Delicious (GD) and Starking Delicious (SD) and another pome fruit, the pear. Apple and pear have similar physiological disorders that develop during cold storage and we examined if the LO2 treatment would also be effective on pear. Application of 0.5% LO2 atmosphere for 10d at 20°C or 500ppb 1-MCP at 20°C prior to cold storage at 0°C, was effective in reducing superficial scald in GS apple. Moreover, LO2 pretreatment was also effective in reducing bitter pit (BP) development in California GS and Israeli GD and SD apples The BP symptoms in GS from California were much more prominent, so the effect of LO2 was more dramatic than the effect on the Israeli cvs. GD and SD, nevertheless the LO2 treatment showed the same trend in all cultivars in reducing BP. The LO2 and 1-MCP -treated fruit exhibited lower levels of ethylene, - farnesene and its oxidation product, 6-methyl-5-hepten-2-one (MHO), as determined by SPME/GC-MS analysis. In addition, LO2 pretreatment applied to California Bartlett or Israeli Spadona pears was effective in reducing superficial scald, senescent scald and internal breakdown after 4 m of cold storage at 0°C. For GS apple, low-temperature storage resulted in oxidative stress and chilling injury, caused by increased production of superoxide anions which in turn led to the generation of other dangerous reactive oxygen species (ROS). Using confocal laser-scanning microscopy and H2O2 measurements of apple peel, we observed ROS accumulation in control fruit, while negligible amounts were found in LO2 and 1-MCP treated fruit. Gene-expression levels of ROS-scavenging enzymes were induced by the various pretreatments: catalase was induced by LO2 treatment, whereas Mn superoxide dismutase was induced by 1-MCP treatment. We assume that LO2 and 1-MCP pretreated fruit remained healthier due to reduced production of ethylene and reactive oxygen substances, such as MHO, during cold storage. The LO2-treated apple exhibited greener peel and firmer fruit after 6 m of cold storage, and the fruit had high crispiness leading to high taste preference. In both pear cultivars, the LO2 treatment led to a reduction in internal breakdown and browning around the seed cavity. We tested the LO2 pre-storage treatment on a semi-commercial scale that would be applicable to a small organic grower by sealing the fruit within the plastic field bins. The treatment was most effective with a continuous flow of nitrogen through the bins; however, a single 6 hour flush of nitrogen was also fairly effective. In addition, we determined that it was very important to have the oxygen levels below 0.5% for approximately 10 days to achieve good scald control, not counting the time required to reduce the oxygen concentration. Our LO2 technology has been proven in this project to be effective in reducing several physiological disorders developed in pome fruit during cold storage. We hope that our non-chemical treatment which is friendly to the environment will be used in the near future for the organic apple and pear industry. The next step should be an analysis of the cost-benefits and commercial feasibility.
APA, Harvard, Vancouver, ISO, and other styles
10

Prusky, Dov, Lisa Vaillancourt, and Robert Fluhr. Host Ammonification by Postharvest Pathogens and its Contribution to Fungal Colonization and Symptom Development. United States Department of Agriculture, December 2006. http://dx.doi.org/10.32747/2006.7592640.bard.

Full text
Abstract:
Postharvest decay of fruits and vegetables caused by pathogenic and saprophytic fungi significantly impairs the quality and quantity of fresh produce brought to market. Consequently, there is considerable interest in identifying factors that determine the susceptibility of these commodities to pathogen infection. Insidious postharvest decays remain quiescent during fruit growth and harvest, but activate during the postharvest period. A key response to the physiological changes occurring during fruit ripening is the initiation of ammonium secretion by the pathogen. Ammonium ions at the infection site (ammonification) have subsequent effects on both the pathogen and the host. An accompanying alkalinization process resulting from ammonia accumulation contributes to pathogenicity, since some important fungal virulence factors, (such as pectate lyase in Colletotrichum sp.), are significantly expressed only under alkaline conditions. In this proposal, investigated the mechanisms by which ammonification and alkalinization of infected tissues by the pathogen affect the host’s defense response to fungal attack, and instead increase compatibility during postharvest pathogen-host interactions. Our hypotheses were:1) that host signals, including ripening-related changes, induce secretion of ammonia by the pathogen; 2) that ammonia accumulation, and the resultant environmental alkalinization regulate the expression of fungal virulence genes that are essential for postharvest rot development; 3) that ammonification enhanced fungal colonization, by “suppression of host responses”, including production of reactive oxygen species, activation of superoxide, and polyphenol oxidase production. Our objectives were: to analyze: 1) factor(s) which activate the production and secretion of ammonia by the fungus; 2) fungal gene(s) that play role(s) in the ammonification process; 3) the relationship between ammonification and the activation of host defense response(s) during pathogen colonization; and 4) analyze hostgene expression in alkalinized regions of fruits attacked by hemibiotrophic fungi.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography