Journal articles on the topic 'Superlensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 journal articles for your research on the topic 'Superlensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ghosh, Rajib, and Rajib Chakraborty. "Superlensing property of 2-D glass photonic crystal." European Physical Journal Applied Physics 92, no. 2 (October 30, 2020): 20501. http://dx.doi.org/10.1051/epjap/2020200237.
Full textYan, Bing, Zengbo Wang, Alan L. Parker, Yu-kun Lai, P. John Thomas, Liyang Yue, and James N. Monks. "Superlensing microscope objective lens." Applied Optics 56, no. 11 (April 7, 2017): 3142. http://dx.doi.org/10.1364/ao.56.003142.
Full textNguyen, Hoai-Minh. "Superlensing using complementary media." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 32, no. 2 (March 2015): 471–84. http://dx.doi.org/10.1016/j.anihpc.2014.01.004.
Full textFehrenbacher, Markus, Stephan Winnerl, Harald Schneider, Jonathan Döring, Susanne C. Kehr, Lukas M. Eng, Yongheng Huo, et al. "Plasmonic Superlensing in Doped GaAs." Nano Letters 15, no. 2 (January 14, 2015): 1057–61. http://dx.doi.org/10.1021/nl503996q.
Full textLv, Jiangtao, Ming Zhou, Qiongchan Gu, Xiaoxiao Jiang, Yu Ying, and Guangyuan Si. "Metamaterial Lensing Devices." Molecules 24, no. 13 (July 4, 2019): 2460. http://dx.doi.org/10.3390/molecules24132460.
Full textLuan, Pi-Gang. "Superlensing effect without obvious negative refraction." Journal of Nanophotonics 1, no. 1 (July 1, 2007): 013518. http://dx.doi.org/10.1117/1.2768384.
Full textZapata-Rodríguez, Carlos J., David Pastor, María T. Caballero, and Juan J. Miret. "Diffraction-managed superlensing using plasmonic lattices." Optics Communications 285, no. 16 (July 2012): 3358–62. http://dx.doi.org/10.1016/j.optcom.2012.04.011.
Full textChristou, George, and Christos Mias. "Critique of Optical Negative Refraction Superlensing." Plasmonics 6, no. 2 (February 3, 2011): 307–9. http://dx.doi.org/10.1007/s11468-011-9205-8.
Full textZhang, Haifei, Linfang Shen, Lixin Ran, Yu Yuan, and Jin Au Kong. "Layered superlensing in two-dimensional photonic crystals." Optics Express 14, no. 23 (2006): 11178. http://dx.doi.org/10.1364/oe.14.011178.
Full textBonnetier, Eric, and Hoai-Minh Nguyen. "Superlensing using hyperbolic metamaterials: the scalar case." Journal de l’École polytechnique — Mathématiques 4 (2017): 973–1003. http://dx.doi.org/10.5802/jep.61.
Full textMitri, F. G. "Ultrasonic superlensing jets and acoustic-fork sheets." Physics Letters A 381, no. 19 (May 2017): 1648–54. http://dx.doi.org/10.1016/j.physleta.2017.03.014.
Full textNguyen, Hoai-Minh. "Superlensing using complementary media and reflecting complementary media for electromagnetic waves." Advances in Nonlinear Analysis 7, no. 4 (November 1, 2018): 449–67. http://dx.doi.org/10.1515/anona-2017-0146.
Full textLi, Peining, and Thomas Taubner. "Multi-wavelength superlensing with layered phonon-resonant dielectrics." Optics Express 20, no. 11 (May 9, 2012): 11787. http://dx.doi.org/10.1364/oe.20.011787.
Full textKawata, Satoshi, Yasushi Inouye, and Prabhat Verma. "Plasmonics for near-field nano-imaging and superlensing." Nature Photonics 3, no. 7 (July 2009): 388–94. http://dx.doi.org/10.1038/nphoton.2009.111.
Full textWu, Qi, Ethan Schonbrun, and Wounjhang Park. "Tunable superlensing by a mechanically controlled photonic crystal." Journal of the Optical Society of America B 23, no. 3 (March 1, 2006): 479. http://dx.doi.org/10.1364/josab.23.000479.
Full textSavo, Salvatore, Emiliano Di Gennaro, and Antonello Andreone. "Superlensing properties of one-dimensional dielectric photonic crystals." Optics Express 17, no. 22 (October 19, 2009): 19848. http://dx.doi.org/10.1364/oe.17.019848.
Full textNielsen, R. B., M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva. "Toward superlensing with metal–dielectric composites and multilayers." Applied Physics B 100, no. 1 (May 29, 2010): 93–100. http://dx.doi.org/10.1007/s00340-010-4065-z.
Full textKharintsev, Sergey S. "Far-field Raman color superlensing based on disordered plasmonics." Optics Letters 44, no. 24 (December 4, 2019): 5909. http://dx.doi.org/10.1364/ol.44.005909.
Full textWang, X., Z. F. Ren, and K. Kempa. "Unrestricted superlensing in a triangular two dimensional photonic crystal." Optics Express 12, no. 13 (2004): 2919. http://dx.doi.org/10.1364/opex.12.002919.
Full textBortchagovsky, Eugene G. "Superlensing approach to a long-focus near-field probe." Optics Letters 33, no. 15 (July 30, 2008): 1765. http://dx.doi.org/10.1364/ol.33.001765.
Full textWang, X., Z. F. Ren, and K. Kempa. "Improved superlensing in two-dimensional photonic crystals with a basis." Applied Physics Letters 86, no. 6 (February 7, 2005): 061105. http://dx.doi.org/10.1063/1.1863413.
Full textMcPhedran, Ross C., and Graeme W. Milton. "A review of anomalous resonance, its associated cloaking, and superlensing." Comptes Rendus. Physique 21, no. 4-5 (December 16, 2020): 409–23. http://dx.doi.org/10.5802/crphys.6.
Full textZapata-Rodríguez, Carlos J., David Pastor, Juan J. Miret, and Slobodan Vukovic. "Uniaxial epsilon-near-zero metamaterials: from superlensing to double refraction." Journal of Nanophotonics 8, no. 1 (January 20, 2014): 083895. http://dx.doi.org/10.1117/1.jnp.8.083895.
Full textEfros, A. L., and C. Y. Li. "Electrodynamics of Left-Handed Medium." Solid State Phenomena 121-123 (March 2007): 1065–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.1065.
Full textLi, Y. Y., P. F. Gu, J. L. Zhang, M. Y. Li, and X. Liu. "Self-collimation and superlensing in wavy-structured two-dimensional photonic crystals." Applied Physics Letters 88, no. 15 (April 10, 2006): 151911. http://dx.doi.org/10.1063/1.2195108.
Full textFoca, E., V. V. Sergentu, F. Daschner, I. M. Tiginynau, V. V. Ursaki, R. Knöchel, and H. Föll. "Superlensing with plane plates consisting of dielectric cylinders in glass envelopes." physica status solidi (a) 206, no. 1 (September 17, 2008): 140–46. http://dx.doi.org/10.1002/pssa.200824209.
Full textZhou, Xiaoming, and Gengkai Hu. "Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass." Applied Physics Letters 98, no. 26 (June 27, 2011): 263510. http://dx.doi.org/10.1063/1.3607277.
Full textYan, Bing, Liyang Yue, James Norman Monks, Xibin Yang, Daxi Xiong, Chunlei Jiang, and Zengbo Wang. "Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyond." Optics Letters 45, no. 5 (February 21, 2020): 1168. http://dx.doi.org/10.1364/ol.380574.
Full textLin, Mei, Shengbin Cheng, Xiaofeng Wu, Shiping Zhan, and Yunxin Liu. "Optical temperature sensing based on upconversion nanoparticles with enhanced sensitivity via dielectric superlensing modulation." Journal of Materials Science 56, no. 17 (March 8, 2021): 10438–48. http://dx.doi.org/10.1007/s10853-021-05943-w.
Full textWang, Zuowei, and Tuanjie Li. "Superlensing effect for flexural waves on phononic thin plates composed by spring-mass resonators." AIP Advances 9, no. 8 (August 2019): 085207. http://dx.doi.org/10.1063/1.5108930.
Full textAddouche, Mahmoud, Mohammed A. Al-Lethawe, Abdelkrim Choujaa, and Abdelkrim Khelif. "Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index." Applied Physics Letters 105, no. 2 (July 14, 2014): 023501. http://dx.doi.org/10.1063/1.4890378.
Full textMilton, Graeme W., Nicolae-Alexandru P. Nicorovici, Ross C. McPhedran, and Viktor A. Podolskiy. "A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2064 (October 5, 2005): 3999–4034. http://dx.doi.org/10.1098/rspa.2005.1570.
Full textHu, Xinhua, Yifeng Shen, Xiaohan Liu, Rongtang Fu, and Jian Zi. "Superlensing effect in liquid surface waves." Physical Review E 69, no. 3 (March 16, 2004). http://dx.doi.org/10.1103/physreve.69.030201.
Full textFourkal, E., I. Velchev, and A. Smolyakov. "Energy and information flow in superlensing." Physical Review A 79, no. 3 (March 30, 2009). http://dx.doi.org/10.1103/physreva.79.033846.
Full textLiang, Liangliang, Daniel B. L. Teh, Ngoc-Duy Dinh, Weiqiang Chen, Qiushui Chen, Yiming Wu, Srikanta Chowdhury, et al. "Upconversion amplification through dielectric superlensing modulation." Nature Communications 10, no. 1 (March 27, 2019). http://dx.doi.org/10.1038/s41467-019-09345-0.
Full textMehla, Sunil, Selvakannan Periasamy, and Suresh Kumar Bhargava. "Readily Tunable Surface Plasmon Resonances in Gold Nanoring Arrays Fabricated Using Lateral Electrodeposition." Nanoscale, 2022. http://dx.doi.org/10.1039/d2nr02198f.
Full textGelkop, Yehonatan, Fabrizio Di Mei, Sagi Frishman, Yehudit Garcia, Ludovica Falsi, Galina Perepelitsa, Claudio Conti, Eugenio DelRe, and Aharon J. Agranat. "Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions." Nature Communications 12, no. 1 (December 2021). http://dx.doi.org/10.1038/s41467-021-27466-3.
Full textHajiahmadi, Mohamad J., Reza Faraji-Dana, and Anja K. Skrivervik. "Far field superlensing inside biological media through a nanorod lens using spatiotemporal information." Scientific Reports 11, no. 1 (January 21, 2021). http://dx.doi.org/10.1038/s41598-021-81091-0.
Full textAmbati, Muralidhar, Nicholas Fang, Cheng Sun, and Xiang Zhang. "Surface resonant states and superlensing in acoustic metamaterials." Physical Review B 75, no. 19 (May 31, 2007). http://dx.doi.org/10.1103/physrevb.75.195447.
Full textLegrand, François, Benoît Gérardin, François Bruno, Jérôme Laurent, Fabrice Lemoult, Claire Prada, and Alexandre Aubry. "Cloaking, trapping and superlensing of lamb waves with negative refraction." Scientific Reports 11, no. 1 (December 2021). http://dx.doi.org/10.1038/s41598-021-03146-6.
Full textLemoult, Fabrice, Mathias Fink, and Geoffroy Lerosey. "A polychromatic approach to far-field superlensing at visible wavelengths." Nature Communications 3, no. 1 (January 2012). http://dx.doi.org/10.1038/ncomms1885.
Full textTang, Shiwei, Qiong He, Shiyi Xiao, Xueqin Huang, and Lei Zhou. "Fractal plasmonic metamaterials: physics and applications." Nanotechnology Reviews 4, no. 3 (January 1, 2015). http://dx.doi.org/10.1515/ntrev-2014-0025.
Full textSilveirinha, Mário G., Carla R. Medeiros, Carlos A. Fernandes, and Jorge R. Costa. "Experimental verification of broadband superlensing using a metamaterial with an extreme index of refraction." Physical Review B 81, no. 3 (January 4, 2010). http://dx.doi.org/10.1103/physrevb.81.033101.
Full textZanotto, Simone, Giorgio Biasiol, Paulo V. Santos, and Alessandro Pitanti. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves." Nature Communications 13, no. 1 (October 8, 2022). http://dx.doi.org/10.1038/s41467-022-33652-8.
Full textFarhat, M., S. Guenneau, S. Enoch, and A. B. Movchan. "Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators." Physical Review E 80, no. 4 (October 12, 2009). http://dx.doi.org/10.1103/physreve.80.046309.
Full textGhosh, Rajib, K. K. Ghosh, and Rajib Chakraborty. "Efficient splitting of broadband LED light into narrowbands using superlensing effect and defects on its top 2D photonic crystal." Optical and Quantum Electronics 49, no. 6 (May 19, 2017). http://dx.doi.org/10.1007/s11082-017-1049-9.
Full textSounas, Dimitrios L., Nikolaos V. Kantartzis, and Theodoros D. Tsiboukis. "Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models." Physical Review E 76, no. 4 (October 17, 2007). http://dx.doi.org/10.1103/physreve.76.046606.
Full textJi, Yanan, Wen Xu, Nan Ding, Haitao Yang, Hongwei Song, Qingyun Liu, Hans Ågren, Jerker Widengren, and Haichun Liu. "Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection." Light: Science & Applications 9, no. 1 (October 30, 2020). http://dx.doi.org/10.1038/s41377-020-00418-0.
Full text