Journal articles on the topic 'Superlattices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superlattices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fullerton, Eric E., Ivan K. Schuller, and Y. Bruynseraede. "Quantitative X-Ray Diffraction From Superlattices." MRS Bulletin 17, no. 12 (December 1992): 33–38. http://dx.doi.org/10.1557/s0883769400046935.
Full textHansen, Monica, Amber C. Abare, Peter Kozodoy, Thomas M. Katona, Michael D. Craven, Jim S. Speck, Umesh K. Mishra, Larry A. Coldren, and Steven P. DenBaars. "Effect Of AlGaN/GaN Strained Layer Superlattice Period On InGaN MQW Laser Diodes." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 14–19. http://dx.doi.org/10.1557/s1092578300004026.
Full textWeng, Hsu Kai, Akira Nagakubo, Hideyuki Watanabe, and Hirotsugu Ogi. "Lattice thermal conductivity in isotope diamond asymmetric superlattices." Japanese Journal of Applied Physics 61, SG (March 10, 2022): SG1004. http://dx.doi.org/10.35848/1347-4065/ac4304.
Full textAntropov, N. О., and Е. А. Kravtsov. "Neutron Reflectometry in Superlattices with Strongly Absorbing Rare-Earth Metals (Gd, Dy)." Поверхность. Рентгеновские, синхротронные и нейтронные исследования, no. 8 (August 1, 2023): 11–15. http://dx.doi.org/10.31857/s1028096023070038.
Full textYu, Yixuan, Avni Jain, Adrien Guillaussier, Vikas Reddy Voggu, Thomas M. Truskett, Detlef-M. Smilgies, and Brian A. Korgel. "Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting?" Faraday Discussions 181 (2015): 181–92. http://dx.doi.org/10.1039/c5fd00006h.
Full textKabalan, Amal A., and Pritpal Singh. "CdTe/PbTe Superlattice Modeling and Fabrication for Solar Cells Applications." Journal of Nano Research 48 (July 2017): 125–37. http://dx.doi.org/10.4028/www.scientific.net/jnanor.48.125.
Full textIslam, Md Tanvirul, Xinkang Chen, Tedi Kujofsa, and John E. Ayers. "Chirped Superlattices as Adjustable Strain Platforms for Metamorphic Semiconductor Devices." International Journal of High Speed Electronics and Systems 27, no. 01n02 (March 2018): 1840009. http://dx.doi.org/10.1142/s0129156418400098.
Full textZhao, Lu, Lijuan Zhang, Houfu Song, Hongda Du, Junqiao Wu, Feiyu Kang, and Bo Sun. "Incoherent phonon transport dominates heat conduction across van der Waals superlattices." Applied Physics Letters 121, no. 2 (July 11, 2022): 022201. http://dx.doi.org/10.1063/5.0096861.
Full textKim, Jin O., Jan D. Achenbach, Meenam Shinn, and Scott A. Barnett. "Effective Elastic Constants of Superlattice Films Measured by Line-Focus Acoustic Microscopy." Journal of Engineering Materials and Technology 117, no. 4 (October 1, 1995): 395–401. http://dx.doi.org/10.1115/1.2804732.
Full textSidorkin, Alexander, Lolita Nesterenko, Yaovi Gagou, Pierre Saint-Gregoire, Eugeniy Vorotnikov, and Nadezhda Popravko. "Dielectric Properties and Switching Processes of Barium Titanate–Barium Zirconate Ferroelectric Superlattices." Materials 11, no. 8 (August 14, 2018): 1436. http://dx.doi.org/10.3390/ma11081436.
Full textZhang, Wei-Chao, Hao Wu, Wei-Feng Sun, and Zhen-Peng Zhang. "First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage." Nanomaterials 12, no. 12 (June 8, 2022): 1966. http://dx.doi.org/10.3390/nano12121966.
Full textWebb, Matthew, Tao Ma, Allen H. Hunter, Sean McSherry, Jonathan Kaufman, Zihao Deng, William B. Carter, et al. "Geometric defects induced by strain relaxation in thin film oxide superlattices." Journal of Applied Physics 132, no. 18 (November 14, 2022): 185307. http://dx.doi.org/10.1063/5.0120176.
Full textGu, X. Wendy, Xingchen Ye, David M. Koshy, Shraddha Vachhani, Peter Hosemann, and A. Paul Alivisatos. "Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals." Proceedings of the National Academy of Sciences 114, no. 11 (February 27, 2017): 2836–41. http://dx.doi.org/10.1073/pnas.1618508114.
Full textKudasov, Yu B., and Dmitry Andreevich Maslov. "Magnetic Structure of Fe/V Superlattices with Variable Thickness of Iron Layers." Solid State Phenomena 152-153 (April 2009): 209–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.152-153.209.
Full textW. Tian, J. C. Jiang, X. Q. Pan, C.D. Theis, and D.G. Schlom. "Microstructure of PbTi03/SrTi03 Superlattice Grown by MBE." Microscopy and Microanalysis 4, S2 (July 1998): 576–77. http://dx.doi.org/10.1017/s143192760002300x.
Full textStaszczak, Grzegorz, Iza Gorczyca, Ewa Grzanka, Julita Smalc-Koziorowska, Grzegorz Targowski, and Tadeusz Suski. "Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers." Materials 16, no. 23 (November 27, 2023): 7386. http://dx.doi.org/10.3390/ma16237386.
Full textXU, MING, WENXUE YU, GUANGMING LUO, CHUNLING CHAI, TONG ZHAO, FAN CHEN, ZHENHONG MAI, WUYAN LAI, ZHONGHUA WU, and DEWU WANG. "ON THE CHARACTERIZATION OF METALLIC SUPERLATTICE STRUCTURES BY X-RAY DIFFRACTION." Modern Physics Letters B 13, no. 19 (August 20, 1999): 663–69. http://dx.doi.org/10.1142/s021798499900083x.
Full textYonezawa, Yu, Hiroyuki Kinbara, Hiroki Umehara, Hirofumi Kakemoto, Takuya Hoshina, Hiroaki Takeda, and Takaaki Tsurumi. "Fabrication of Dielectric/Conductive Hybrid Artificial Superlattices Using Molecular Beam Epitaxy Method." Key Engineering Materials 421-422 (December 2009): 139–42. http://dx.doi.org/10.4028/www.scientific.net/kem.421-422.139.
Full textHoglund, Eric R., De-Liang Bao, Andrew O’Hara, Sara Makarem, Zachary T. Piontkowski, Joseph R. Matson, Ajay K. Yadav, et al. "Emergent interface vibrational structure of oxide superlattices." Nature 601, no. 7894 (January 26, 2022): 556–61. http://dx.doi.org/10.1038/s41586-021-04238-z.
Full textTwigg, M. E., B. R. Bennett, J. R. Waterman, J. L. Davis, B. V. Shanabrook, and R. J. Wagner. "Interfacial properties of GaSb/InAs superlattices." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 826–27. http://dx.doi.org/10.1017/s0424820100149969.
Full textSankin, Vladimir Ilich, Alexey G. Petrov, Pavel P. Shkrebiy, Olga P. Kazarova, and Alexander A. Lebedev. "SiC Natural and Artificial Superlattices for the Implementation of the Bloch Oscillation Process: A Comparative Analysis." Materials Science Forum 1004 (July 2020): 256–64. http://dx.doi.org/10.4028/www.scientific.net/msf.1004.256.
Full textRen, Shang-Fen, and Jason Stanfield. "Interface Phonon Modes in Strained Semiconductor Superlattices." International Journal of Modern Physics B 12, no. 29n31 (December 20, 1998): 3137–40. http://dx.doi.org/10.1142/s0217979298002222.
Full textWILSON, K. S. JOSEPH, and K. NAVANEETHAKRISHNAN. "PHONON POLARITON MODES IN QUANTUM DOT SUPERLATTICES." Modern Physics Letters B 18, no. 02n03 (February 10, 2004): 105–12. http://dx.doi.org/10.1142/s021798490400672x.
Full textEymery, J. "Localized destructive interference in X-ray specular reflectivity." Journal of Applied Crystallography 32, no. 5 (October 1, 1999): 859–63. http://dx.doi.org/10.1107/s0021889899006238.
Full textWang, Bruce, Antonio Bianconi, Ian D. R. Mackinnon, and Jose A. Alarco. "Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6." Crystals 14, no. 6 (May 24, 2024): 499. http://dx.doi.org/10.3390/cryst14060499.
Full textSanina, Viktoriya, Boris Khannanov, and Evgenii Golovenchits. "Optical Control of Superlattices States Formed Due to Electronic Phase Separation in Multiferroic Eu0.8Ce0.2Mn2O5." Nanomaterials 11, no. 7 (June 24, 2021): 1664. http://dx.doi.org/10.3390/nano11071664.
Full textJaszczak, J. A., and D. Wolf. "On the elastic behavior of composition-modulated superlattices." Journal of Materials Research 6, no. 6 (June 1991): 1207–18. http://dx.doi.org/10.1557/jmr.1991.1207.
Full textPark, K., L. Salamanca-Riba, and B. T. Jonker. "TEM studies of (ZnSe/FeSe) superlattices." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1382–83. http://dx.doi.org/10.1017/s0424820100131541.
Full textSaito, Yuta, Paul Fons, Kirill V. Mitrofanov, Kotaro Makino, Junji Tominaga, John Robertson, and Alexander V. Kolobov. "Chalcogenide van der Waals superlattices: a case example of interfacial phase-change memory." Pure and Applied Chemistry 91, no. 11 (November 26, 2019): 1777–86. http://dx.doi.org/10.1515/pac-2019-0105.
Full textJohn, J. D., S. Nishimoto, N. Kadowaki, I. Saito, K. Okano, S. Okano, D. R. T. Zahn, et al. "Quantum device designing (QDD) for future semiconductor engineering." Review of Scientific Instruments 93, no. 3 (March 1, 2022): 034703. http://dx.doi.org/10.1063/5.0081544.
Full textGoepfert, I. D., E. F. Schubert, A. Osinsky, and P. E. Norris. "Efficient Acceptor Activation in AlxGa1−xN/GaN Doped Superlattices." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 329–35. http://dx.doi.org/10.1557/s1092578300004464.
Full textHarfenist, S. A., Z. L. Wang, R. L. Whetten, I. Vezmar, M. M. Alvarez, and B. E. Salisbury. "Three-Dimensional Hexagonal Close-Packed Superlattices of Passivated Ag Nanocrystals." Microscopy and Microanalysis 3, S2 (August 1997): 431–32. http://dx.doi.org/10.1017/s1431927600009041.
Full textPanomsuwan, Gasidit, Nagahiro Saito, and Osamu Takai. "Structural Properties and Microstructures of SrTiO3/SrTi1-xNbxO3 Superlattices Grown by Ion Beam Deposition." Materials Science Forum 695 (July 2011): 598–601. http://dx.doi.org/10.4028/www.scientific.net/msf.695.598.
Full textHögberg, H., J. Birch, M. Odén, J.-O. Malm, L. Hultman, and U. Jansson. "Growth, structure, and mechanical properties of transition metal carbide superlattices." Journal of Materials Research 16, no. 5 (May 2001): 1301–10. http://dx.doi.org/10.1557/jmr.2001.0182.
Full textJin, Cai, Wanrong Geng, Linjing Wang, Wenqiao Han, Dongfeng Zheng, Songbai Hu, Mao Ye, et al. "Tuning ferroelectricity and ferromagnetism in BiFeO3/BiMnO3 superlattices." Nanoscale 12, no. 17 (2020): 9810–16. http://dx.doi.org/10.1039/c9nr09670a.
Full textYun, Hongseok, and Taejong Paik. "Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures." Nanomaterials 9, no. 9 (September 1, 2019): 1243. http://dx.doi.org/10.3390/nano9091243.
Full textKILLI, MATTHEW, SI WU, and ARUN PARAMEKANTI. "GRAPHENE: KINKS, SUPERLATTICES, LANDAU LEVELS AND MAGNETOTRANSPORT." International Journal of Modern Physics B 26, no. 21 (July 18, 2012): 1242007. http://dx.doi.org/10.1142/s0217979212420076.
Full textLi, Xiaowen, Xiaobin Qiang, Zhenhao Gong, Yubo Zhang, Penglai Gong, and Lang Chen. "Tunable Negative Poisson’s Ratio in Van der Waals Superlattice." Research 2021 (April 10, 2021): 1–11. http://dx.doi.org/10.34133/2021/1904839.
Full textHsu, Y., T. S. Kuan, and W. I. Wang. "Effects of substrate orientation on growth of epitaxial layers." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 948–49. http://dx.doi.org/10.1017/s0424820100167202.
Full textZhu, Zhen Ye, Jing Bai, Fei Lu, and Qian Wang. "First-Principles Study of Polarization Behavior in BaTiO3/PbTiO3 Ferroelectric Superlattices." Advanced Materials Research 833 (November 2013): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.833.3.
Full textMancoff, F. B., J. F. Bobo, O. E. Richter, K. Bessho, P. R. Johnson, R. Sinclair, W. D. Nix, R. L. White, and B. M. Clemens. "Growth and Characterization of Epitaxial NiMnSb/PtMnSb C1b Heusler alloy superlattices." Journal of Materials Research 14, no. 4 (April 1999): 1560–69. http://dx.doi.org/10.1557/jmr.1999.0209.
Full textMcKinnon, G. H., J. N. McMullin, D. Landheer, M. Buchanan, P. Janega, and M. W. Denhoff. "Selective contacts for silicon-doping superlattices." Canadian Journal of Physics 67, no. 4 (April 1, 1989): 326–29. http://dx.doi.org/10.1139/p89-057.
Full textNoguchi, Yuji, and Hiroki Matsuo. "Polarization and Dielectric Properties of BiFeO3-BaTiO3 Superlattice-Structured Ferroelectric Films." Nanomaterials 11, no. 7 (July 19, 2021): 1857. http://dx.doi.org/10.3390/nano11071857.
Full textSakai, Yuki, and Susumu Saito. "Geometries and Electronic Structure of Graphene and Hexagonal BN Superlattices." MRS Proceedings 1407 (2012). http://dx.doi.org/10.1557/opl.2012.455.
Full textKumakura, Kazuhide, Toshiki Makimoto, and Naoki Kobayashi. "High Room-Temperature Hole Concentrations above 1019 cm−3 in Mg-Doped InGaN/GaN Superlattices." MRS Proceedings 622 (2000). http://dx.doi.org/10.1557/proc-622-t5.11.1.
Full textRodríguez-González, Rogelio, Heraclio García-Cervantes, Francisco Javier García-Rodríguez, Gerardo Jesús Escalera Santos, and Isaac Rodríguez-Vargas. "Extended states in random dimer gated graphene superlattices." Journal of Physics: Condensed Matter, May 22, 2024. http://dx.doi.org/10.1088/1361-648x/ad4f3c.
Full textSchuller, Ivan K., Eric E. Fullerton, H. Vanderstraeten, and Y. Bruynseraede. "Quantitative X-Ray Structure Determination of Superlattices and Interfaces." MRS Proceedings 229 (1991). http://dx.doi.org/10.1557/proc-229-41.
Full textHansen, Monica, Amber C. Abare, Peter Kozodoy, Thomas M. Katona, Michael D. Craven, Jim S. Speck, Umesh K. Mishra, Larry A. Coldren, and Steven P. DenBaars. "Effect of AlGaN/GaN Strained Layer Superlattice Period on InGaN MQW Laser Diodes." MRS Proceedings 595 (1999). http://dx.doi.org/10.1557/proc-595-f99w1.4.
Full textSchuller, Ivan K. "Magnetic Superlattices." MRS Proceedings 103 (1987). http://dx.doi.org/10.1557/proc-103-335.
Full textPark, K., L. Salamanca-Riba, and B. T. Jonker. "Structural Studies Of (ZnSe/FeSe) Superlattices By Transmission Electron Microscopy." MRS Proceedings 238 (1991). http://dx.doi.org/10.1557/proc-238-683.
Full text