To see the other types of publications on this topic, follow the link: Superionic Glasses.

Journal articles on the topic 'Superionic Glasses'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Superionic Glasses.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

LIU, C., H. SUNDAR, and C. ANGELL. "All-halide superionic glasses." Solid State Ionics 18-19 (January 1986): 442–48. http://dx.doi.org/10.1016/0167-2738(86)90157-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ingram, Malcolm D. "Superionic glasses: theories and applications." Current Opinion in Solid State and Materials Science 2, no. 4 (August 1997): 399–404. http://dx.doi.org/10.1016/s1359-0286(97)80079-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mercier, R., M. Tachez, J. P. Malugani, and C. Rousselot. "Microstructure of silver superionic glasses." Materials Chemistry and Physics 23, no. 1-2 (August 1989): 13–27. http://dx.doi.org/10.1016/0254-0584(89)90014-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aniya, Masaru. "Correlating the Annealing Temperature Dependence of the Structural Inhomogeneity and the Diffusion in Zr-Ti-Cu-Ni-Be Glassy System." Solid State Phenomena 330 (April 12, 2022): 11–15. http://dx.doi.org/10.4028/p-m5a30s.

Full text
Abstract:
The relation between the annealing temperature dependence of the structural inhomogeneity and the diffusion coefficient in a metallic glass forming system Zr-Ti-Cu-Ni-Be is studied by using reported experimental data. It is shown that the diffusion coefficient increases with the increase of the correlation length of the structural inhomogeneity. Interestingly, the result found resembles the behavior known in superionic glasses. A discussion on the found relationship is given by exploiting the model for the superionic glasses proposed by the author. Based on the model, an inhomogeneity dependent diffusivity maximum is predicted.
APA, Harvard, Vancouver, ISO, and other styles
5

Bartolotta, A. "Low-energy vibrations in superionic glasses." Solid State Ionics 105, no. 1-4 (January 1, 1998): 97–102. http://dx.doi.org/10.1016/s0167-2738(97)00454-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Minami, Tsutomu. "Recent progress in superionic conducting glasses." Journal of Non-Crystalline Solids 95-96 (December 1987): 107–18. http://dx.doi.org/10.1016/s0022-3093(87)80103-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Russina, M., M. Arai, E. Kartini, F. Mezei, and M. Nakamura. "Mobile cation motion in superionic glasses." Physica B: Condensed Matter 385-386 (November 2006): 240–42. http://dx.doi.org/10.1016/j.physb.2006.05.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dianoux, A. J., M. Tachez, R. Mercier, and J. P. Malugani. "Neutron scattering by superionic conductor glasses." Journal of Non-Crystalline Solids 131-133 (June 1991): 973–80. http://dx.doi.org/10.1016/0022-3093(91)90711-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pradel, A., and M. Ribes. "Ion transport in superionic conducting glasses." Journal of Non-Crystalline Solids 172-174 (September 1994): 1315–23. http://dx.doi.org/10.1016/0022-3093(94)90658-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marple, M., D. C. Kaseman, S. Kim, and S. Sen. "Superionic conduction of silver in homogeneous chalcogenide glasses." Journal of Materials Chemistry A 4, no. 3 (2016): 861–68. http://dx.doi.org/10.1039/c5ta07301d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

DING YI, YU WEN-HAI, and WU KUN-YU. "ANELASTIC RELAXATION WITH INFRARED DIVERGENCE SUPERIONIC GLASSES." Acta Physica Sinica 38, no. 1 (1989): 134. http://dx.doi.org/10.7498/aps.38.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sorokin, N. I. "Superionic Transport in Fluoride Composites and Glasses." Russian Journal of Electrochemistry 40, no. 5 (May 2004): 569–77. http://dx.doi.org/10.1023/b:ruel.0000027630.77417.be.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Saunders, G. A., H. A. A. Sidek, J. D. Comins, G. Carini, and M. Federico. "Elastic behaviour under pressure of superionic glasses." Philosophical Magazine B 56, no. 1 (July 1987): 1–13. http://dx.doi.org/10.1080/13642818708211220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Itoh, Keiji, Masashi Sonobe, Kazuhiro Mori, Masaaki Sugiyama, and Toshiharu Fukunaga. "Structural observation of Li2S–GeS2 superionic glasses." Physica B: Condensed Matter 385-386 (November 2006): 520–22. http://dx.doi.org/10.1016/j.physb.2006.05.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kartini, E., M. Nakamura, M. Arai, Y. Inamura, J. W. Taylor, and M. Russina. "Universal dynamics behavior in superionic conducting glasses." Solid State Ionics 180, no. 6-8 (May 14, 2009): 506–9. http://dx.doi.org/10.1016/j.ssi.2008.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

BENASSI, P., and A. FONTANA. "Raman and Brillouin scattering in superionic glasses." Le Journal de Physique IV 02, no. C2 (October 1992): C2–149—C2–152. http://dx.doi.org/10.1051/jp4:1992219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Boilot, J. P., and Ph Colomban. "Sodium and lithium superionic gels and glasses." Journal of Materials Science Letters 4, no. 1 (January 1985): 22–24. http://dx.doi.org/10.1007/bf00719885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hiki, Y., H. Takahashi, and H. Kobayashi. "Anelasticity and viscosity of superionic conducting glasses." Journal of Alloys and Compounds 211-212 (September 1994): 333–36. http://dx.doi.org/10.1016/0925-8388(94)90514-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fontana, A., F. Rocca, and A. Tomasi. "Light scattering in AgI containing superionic glasses." Journal of Non-Crystalline Solids 123, no. 1-3 (August 1990): 230–33. http://dx.doi.org/10.1016/0022-3093(90)90788-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Indoh, Takaki, and Masaru Aniya. "Testing the Applicability of an Expression for the Non-Arrhenius Ionic Conductivity in Solid Electrolytes." Advanced Materials Research 123-125 (August 2010): 1103–6. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.1103.

Full text
Abstract:
In a previous study, we have proposed a model that describes the non-Arrhenius ionic conduction behavior in superionic glasses. In the present report, the model is applied to analyze the conductivity behavior of a wide variety of solid electrolytes that include crystals, glasses, polymers, composites and mixed ionic-electronic conductors. From the analysis of the model, the physical factor responsible for the non-Arrhenius behavior has been extracted and discussed.
APA, Harvard, Vancouver, ISO, and other styles
21

Studenyak, I. P. "Optical absorption edge in (Ag3AsS3)x(As2S3)1-x superionic glasses." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 2 (May 30, 2012): 147–51. http://dx.doi.org/10.15407/spqeo15.02.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

WANG YANG-PU and JIN QI-SHU. "THE THEORY OF ULTRASONIC ATTENUATION IN SUPERIONIC GLASSES." Acta Physica Sinica 37, no. 7 (1988): 1083. http://dx.doi.org/10.7498/aps.37.1083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lichkova, N. V., A. L. Despotuli, V. N. Zagorodnev, and N. A. Minenkova. "Superionic Glasses Based on Silver and Caesium Monohalides." Materials Science Forum 67-68 (January 1991): 601–6. http://dx.doi.org/10.4028/www.scientific.net/msf.67-68.601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hariharan, K., and A. Durga Rani. "Transport studies on superionic AgI−Ag2O−CrO3 glasses." Solid State Ionics 28-30 (September 1988): 799–803. http://dx.doi.org/10.1016/s0167-2738(88)80149-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ureña, M. A., M. Fontana, B. Arcondo, and M. T. Clavaguera-Mora. "Crystallization processes of Ag–Ge–Se superionic glasses." Journal of Non-Crystalline Solids 320, no. 1-3 (June 2003): 151–67. http://dx.doi.org/10.1016/s0022-3093(03)00022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Varsamis, C. P. E., E. I. Kamitsos, M. Tatsumisago, and T. Minami. "Structural investigation of superionic AgI-containing orthoborate glasses." Journal of Non-Crystalline Solids 345-346 (October 2004): 93–98. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yu, W. "Low frequency relaxation conductance theory of superionic glasses." Solid State Ionics 31, no. 1 (October 1988): 9–12. http://dx.doi.org/10.1016/0167-2738(88)90280-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bhattacharya, S., and A. Ghosh. "Relaxation of silver ions in superionic borate glasses." Chemical Physics Letters 424, no. 4-6 (June 2006): 295–99. http://dx.doi.org/10.1016/j.cplett.2006.04.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

NOWIŃSKI, JAN L., WIOLETA ŚLUBOWSKA, JERZY E. GARBARCZYK, and MAREK WASIUCIONEK. "DSC AND ELECTRICAL CONDUCTIVITY STUDIES ON SUPERIONIC ALL-GLASS PHOSPHATE-BASED COMPOSITES." Functional Materials Letters 04, no. 02 (June 2011): 139–42. http://dx.doi.org/10.1142/s1793604711001890.

Full text
Abstract:
The work investigates electrical properties of all-glass composite Ag +-ion conductors based on silver phosphate glasses. A combination of X-ray diffraction (XRD) and differential scanning calorimetry (DSC) was used for characterization of the samples. The impedance spectroscopy (IS) was applied to determine the electrical conductivity in a wide temperature range (from -140 to +20°C). Results of the DSC studies indicate that all-glass materials prepared from the powdered glasses are bi-phasic. On the other hand their electrical properties resemble homogeneous rather than heterogeneous superionic conductors.
APA, Harvard, Vancouver, ISO, and other styles
30

Ilinskiy A.V., Castro R.A., Pashkevich M.E., Popova I.O., Sidorov A.I., and Shadrin E.B. "Impedancemetry of Ag-=SUB=-2-=/SUB=-S nanocrystallites embedded in nanoporous glasses." Physics of the Solid State 64, no. 14 (2022): 2437. http://dx.doi.org/10.21883/pss.2022.14.54347.176.

Full text
Abstract:
The temperature dependences of the dielectric spectra of Ag2S nanocrystallites synthesized inside the channels of nanoporous glasses NPG-17 with an average diameter of filamentous pores of 17 nm are studied. The macroscopic mechanism for the occurrence of the frequency dependence of the electrical response of a nanoporous structure NPG-17 + Ag2S is proposed. Formation of the model of mechanism is based superionic phase transition in Ag2S nanocrystallites fixed inside the channels of nanoporous glass is discussed. Keywords: silver sulfide, Ag2S, nanoporous glasses, nanostructured materials, impedancemetry.
APA, Harvard, Vancouver, ISO, and other styles
31

Studenyak, I. P. "Dielectric permittivity of (Ag3AsS3)x(As2S3)1-x superionic glasses and composites." Semiconductor Physics Quantum Electronics and Optoelectronics 17, no. 2 (June 30, 2014): 174–78. http://dx.doi.org/10.15407/spqeo17.02.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

TATSUMISAGO, Masahiro, Kouichi HIRAI, Tsutomu MINAMI, Kazunori TAKADA, and Shigeo KONDO. "Superionic Conduction in Rapidly Quenched Li2S-SiS2-Li3PO4 Glasses." Journal of the Ceramic Society of Japan 101, no. 1179 (1993): 1315–17. http://dx.doi.org/10.2109/jcersj.101.1315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bhattacharya, S., and A. Ghosh. "Relaxation dynamics in AgI-doped silver vanadate superionic glasses." Journal of Chemical Physics 123, no. 12 (September 22, 2005): 124514. http://dx.doi.org/10.1063/1.2049276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Carini, G., M. Cutroni, M. Federico, and G. Tripodo. "Microscopic origin of low-energy excitations in superionic glasses." Physical Review B 37, no. 12 (April 15, 1988): 7021–26. http://dx.doi.org/10.1103/physrevb.37.7021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lewandowska, R., K. Krasowski, R. Bacewicz, and J. E. Garbarczyk. "Studies of silver-vanadate superionic glasses using Raman spectroscopy." Solid State Ionics 119, no. 1-4 (April 1999): 229–34. http://dx.doi.org/10.1016/s0167-2738(98)00508-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Belin, R. "Ion dynamics in superionic chalcogenide glasses: Complete conductivity spectra." Solid State Ionics 136-137, no. 1-2 (November 2, 2000): 1025–29. http://dx.doi.org/10.1016/s0167-2738(00)00556-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Takahashi, H. "Origin of FSDP in superionic AgI–Ag2O–V2O5 glasses." Solid State Ionics 168, no. 1-2 (March 15, 2004): 93–98. http://dx.doi.org/10.1016/j.ssi.2003.12.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Stellhorn, J. R., S. Hosokawa, Y. Kawakita, D. Gies, W. C. Pilgrim, K. Hayashi, K. Ohoyama, N. Blanc, and N. Boudet. "Local structure of room-temperature superionic Ag–GeSe3 glasses." Journal of Non-Crystalline Solids 431 (January 2016): 68–71. http://dx.doi.org/10.1016/j.jnoncrysol.2015.02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Matsuo, S., H. Yugami, and M. Ishigame. "Quasielastic light scattering in superionic glasses AgI-Ag2O-MoO3." Physical Review B 48, no. 21 (December 1, 1993): 15651–57. http://dx.doi.org/10.1103/physrevb.48.15651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ghosh, Aloka, D. Dutta, S. Kabi, and A. Ghosh. "Electrical relaxation in CdI2 doped silver vanadate superionic glasses." Journal of Applied Physics 105, no. 6 (March 15, 2009): 064107. http://dx.doi.org/10.1063/1.3095512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Minami, Tsutomu, Toshiharu Saito, and Masahiro Tatsumisago. "Preparation and characterization of α-AgI frozen superionic glasses." Solid State Ionics 86-88 (July 1996): 415–20. http://dx.doi.org/10.1016/0167-2738(96)00163-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Durand, B., G. Taillades, A. Pradel, M. Ribes, J. C. Badot, and N. Belhadj-Tahar. "Frequency dependence of conductivity in superionic conducting chalcogenide glasses." Journal of Non-Crystalline Solids 172-174 (September 1994): 1306–14. http://dx.doi.org/10.1016/0022-3093(94)90657-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Aniya, Masaru. "Bonding character and ionic conduction in solid electrolytes." Pure and Applied Chemistry 91, no. 11 (November 26, 2019): 1797–806. http://dx.doi.org/10.1515/pac-2018-1220.

Full text
Abstract:
Abstract The properties of the materials are intimately related to the nature of the chemical bond. Research to explain the peculiarities of superionic materials by focusing on the bonding character of the materials is presented. In particular, a brief review of some fundamental aspects of superionic conductors is given based on the talk presented at “Solid State Chemistry 2018, Pardubice” in addition to some new results related to the subject. Specifically, the topics on bond fluctuation model of ionic conductors, the role of medium range structure in the ionic conductivity, bonding aspects of non-Arrhenius ionic conductivity and elastic properties of ionic conductors are discussed. Key concepts that are gained from these studies is stressed, such as the importance of the coexistence of different types of bonding, and the role of medium range structure in glasses for efficient ionic transport in solids. These concepts could help the development of new materials.
APA, Harvard, Vancouver, ISO, and other styles
44

Cutroni, Maria, Andrea Mandanici, and Ezio Bruno. "Mechanical response of some peculiar superionic glasses at ultrasonic frequencies." Phys. Chem. Chem. Phys. 4, no. 18 (2002): 4539–42. http://dx.doi.org/10.1039/b203311a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Carini, G., M. Cutroni, M. Federico, G. Galli, and G. Tripodo. "Structural defects characterized by low activation energies in superionic glasses." Philosophical Magazine B 59, no. 1 (January 1989): 43–48. http://dx.doi.org/10.1080/13642818908208443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fontana, M. P., B. Rosi, A. Fontana, and F. Rocca. "Electron-vibration coupling in a dynamical fractal: Superionic borate glasses." Philosophical Magazine B 65, no. 2 (February 1992): 143–51. http://dx.doi.org/10.1080/13642819208217891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Benassi, P., A. Fontana, and P. A. M. Rodrigues. "Analysis of quasi-elastic scattering in AgI-based superionic glasses." Philosophical Magazine B 65, no. 2 (February 1992): 173–80. http://dx.doi.org/10.1080/13642819208217894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Börjesson, L., R. L. McGreew, and W. S. Howells. "Fractal aspects of superionic glasses from Reverse Monte Carlo simulations." Philosophical Magazine B 65, no. 2 (February 1992): 261–71. http://dx.doi.org/10.1080/13642819208217901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kawamura, J. "Frequency dependent conductivity of organic–inorganic mixed superionic conductor glasses." Solid State Ionics 113-115, no. 1-2 (December 1, 1998): 703–9. http://dx.doi.org/10.1016/s0167-2738(98)00333-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Braga, M. H., J. A. Ferreira, V. Stockhausen, J. E. Oliveira, and A. El-Azab. "Novel Li3ClO based glasses with superionic properties for lithium batteries." J. Mater. Chem. A 2, no. 15 (2014): 5470–80. http://dx.doi.org/10.1039/c3ta15087a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography