Journal articles on the topic 'Superelastic electron scattering'

To see the other types of publications on this topic, follow the link: Superelastic electron scattering.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 42 journal articles for your research on the topic 'Superelastic electron scattering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stockman, K. A., V. Karaganov, I. Bray, and P. J. O. Teubner. "Superelastic electron scattering from potassium." Journal of Physics B: Atomic, Molecular and Optical Physics 31, no. 20 (October 28, 1998): L867—L872. http://dx.doi.org/10.1088/0953-4075/31/20/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karaganov, V., Igor Bray, P. J. O. Teubner, and P. Farrell. "Superelastic electron scattering on lithium." Physical Review A 54, no. 1 (July 1, 1996): R9—R12. http://dx.doi.org/10.1103/physreva.54.r9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hall, B. V., R. T. Sang, M. Shurgalin, W. R. MacGillivray, M. C. Standage, and P. M. Farrell. "Electron superelastic scattering from states of atomic sodium and rubidium." Canadian Journal of Physics 74, no. 11-12 (November 1, 1996): 977–83. http://dx.doi.org/10.1139/p96-817.

Full text
Abstract:
This paper reports on the extension of the electron superelastic scattering technique to three new situations. The first considers scattering from the 32P3/2 level of Na that has been excited by two laser modes tuned, respectively, to the transitions from the two hyperfine states of the 32S1/2 ground level. Both coherent and noncoherent modes are treated in a full quantum electrodynamic model of the laser excitation. Under certain conditions, the time-averaged probability of finding an atom in the 32P3/2 level exceeds 0.5. The second situation is electron superelastic scattering from the 32D5/2 level of Na that has been resonantly excited from the ground level via a resonant intermediate level. With the first observation of superelastically scattered electrons from this higher lying level recently recorded, this paper considers the extension of the quantum electrodynamics (QED) model to describe the optical excitation process. Application of superelastic scattering to the 52S1/2–52P3/2 transition of Rb is the third situation considered. The superelastic scattering formalism is extended to allow for a nonzero spin flip cross section for this transition. The resulting optical pumping terms are calculated using the QED model and the method of their determination for the superelastic scattering experiment described. The experimental design necessary to measure all of the collision parameters for this transition is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Teubner, P. J. O., V. Karaganov, M. R. Law, and P. M. Farrell. "Superelastic electron scattering from calcium and lithium." Canadian Journal of Physics 74, no. 11-12 (November 1, 1996): 984–90. http://dx.doi.org/10.1139/p96-818.

Full text
Abstract:
Superelastic scattering experiment were performed on optically pumped calcium atoms at energies of 25.7 and 45 eV referred to the ground state. Orientation and alignment parameters derived from these experiments are compared with the predictions of several theories based on a distorted-wave formalism. The agreement between theory and experiment is unsatisfactory at the lower energy at all scattering angles. At the higher energy agreement improves at small scattering angles but is poor at middle angles. The results of our quantum electrodynamical calculation on optical pumping in lithium are compared with our observations. We find such good agreement between theory and experiment that we explore the possibility of superelastic scattering experiments on lithium atoms that are optically pumped with single-frequency laser light. A two-frequency pumping system is described and its use in the observation of superelastic scattering from lithium is discussed. Orientation and alignment parameters are presented at an equivalent energy of 21.8 eV for small angles. They are compared with those predicted by two close-coupling calculations. Excellent agreement is found between the present work and the convergent close-coupling theory of Bray.
APA, Harvard, Vancouver, ISO, and other styles
5

Jacka, M., J. Kelly, B. Lohmann, and S. J. Buckman. "Superelastic electron scattering from metastable helium." Journal of Physics B: Atomic, Molecular and Optical Physics 28, no. 10 (May 28, 1995): L361—L366. http://dx.doi.org/10.1088/0953-4075/28/10/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Teubner, P. J. O., V. Karaganov, and K. A. Stockman. "Coherence and Correlation in Electron Scattering from the Alkalis." Australian Journal of Physics 52, no. 3 (1999): 421. http://dx.doi.org/10.1071/ph98081.

Full text
Abstract:
A series of superelastic electron scattering experiments from lithium and from potassium is described in which the total polarisation parameter P+ is measured. We report significant departures from the coherence condition P+ = 1 for both targets. The structure observed in the parameter P+ can be interpreted by a qualitative wave mechanical model that had been introduced by our research group to explain similar structure in superelastic electron scattering experiments from sodium.
APA, Harvard, Vancouver, ISO, and other styles
7

Marushka, V. I., and I. I. Shafranyosh. "Superelastic electron scattering by metastable strontium atoms." Technical Physics 53, no. 4 (April 2008): 529–31. http://dx.doi.org/10.1134/s1063784208040257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, T. Y., Z. Shi, C. H. Ying, L. Vušković, and B. Bederson. "Superelastic electron scattering by polarized excited sodium." Physical Review A 51, no. 5 (May 1, 1995): 3773–82. http://dx.doi.org/10.1103/physreva.51.3773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Teubner, PJO, PM Farrell, V. Karaganov, MR Law, and V. Suvorov. "Laser Assisted Collisions of Electrons with Metal Vapours." Australian Journal of Physics 49, no. 2 (1996): 481. http://dx.doi.org/10.1071/ph960481.

Full text
Abstract:
Three separate experiments are described which use laser radiation to probe the details of electron scattering processes from metal vapour targets. Results from superelastic scattering experiments from calcium are presented. The experiments were carried out at incident energies of 25�7 and 45 eV referred to the ground state. Scattering amplitudes derived from these experiments demonstrate that current theories are inadequate. The coherence of the excitation process has been studied by measuring the total polarisation. It is shown that the excitation process is coherent over the whole kinematic range. Preliminary results from a study of superelastic electron scattering from lithium are discussed where it is shown that a quantum electrodynamical model can be used to describe the optical pumping process in 6Li and 7Li. In addition the first superelastic electron spectrum is presented for experiments on lithium. A stepwise excitation technique is described with which cross sections for the electron impact excitation of the 3d9 4s2 2D state in copper can be measured. The experiments are complicated by the presence of D states in the incident copper beam. The origin of these D states is described as is a modification of the technique which leads to their removal.
APA, Harvard, Vancouver, ISO, and other styles
10

Марушка, В. І., С. Ю. Угрин, and І. І. Шафраньош. "Superelastic electron scattering on the metastable barium atoms." Scientific Herald of Uzhhorod University.Series Physics 3 (December 31, 1998): 33–37. http://dx.doi.org/10.24144/2415-8038.1998.3.33-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

McClelland, J. J., M. H. Kelley, and R. J. Celotta. "Large-angle superelastic electron scattering from Na(3P)." Journal of Physics B: Atomic and Molecular Physics 20, no. 12 (June 28, 1987): L385—L388. http://dx.doi.org/10.1088/0022-3700/20/12/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Teubner, P. J. O., and R. E. Scholten. "Coherence, exchange and superelastic electron scattering from sodium." Journal of Physics B: Atomic, Molecular and Optical Physics 25, no. 12 (June 28, 1992): L301—L306. http://dx.doi.org/10.1088/0953-4075/25/12/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shafranyosh, I. I., and V. I. Marushka. "Superelastic electron scattering from the metastable magnesium atoms." Journal of Physical Studies 4, no. 4 (2000): 415–18. http://dx.doi.org/10.30970/jps.04.415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Y., and P. W. Zetner. "Superelastic electron scattering from laser-excited174Yb(...6s6p 63P1)." Journal of Physics B: Atomic, Molecular and Optical Physics 27, no. 12 (June 28, 1994): L293—L298. http://dx.doi.org/10.1088/0953-4075/27/12/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zeman, V., R. P. McEachran, and A. D. Stauffer. "Relativistic calculation of superelastic electron - alkali atom scattering." Journal of Physics B: Atomic, Molecular and Optical Physics 30, no. 15 (August 14, 1997): 3475–90. http://dx.doi.org/10.1088/0953-4075/30/15/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McClelland, J. J., M. H. Kelley, and R. J. Celotta. "Spin Dependence in Superelastic Electron Scattering fromNa(3P)." Physical Review Letters 55, no. 7 (August 12, 1985): 688–91. http://dx.doi.org/10.1103/physrevlett.55.688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Karaganov, V., Igor Bray, and P. J. O. Teubner. "Superelastic electron - lithium scattering at 7 and 14 eV." Journal of Physics B: Atomic, Molecular and Optical Physics 31, no. 4 (February 28, 1998): L187—L191. http://dx.doi.org/10.1088/0953-4075/31/4/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Scholten, R. E., G. F. Shen, and P. J. O. Teubner. "Superelastic electron scattering from sodium: alignment and orientation parameters." Journal of Physics B: Atomic, Molecular and Optical Physics 26, no. 5 (March 14, 1993): 987–1004. http://dx.doi.org/10.1088/0953-4075/26/5/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Baynard, T., A. C. Reber, R. F. Niedziela, S. A. Darveau, B. Prutzman, and R. S. Berry. "Electron−Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies†." Journal of Physical Chemistry A 111, no. 49 (December 2007): 12487–94. http://dx.doi.org/10.1021/jp075583e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hanne, G. F., J. J. McClelland, R. E. Scholten, and R. J. Celotta. "Spin-resolved superelastic electron scattering from laser-excited chromium atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 26, no. 21 (November 14, 1993): L753—L758. http://dx.doi.org/10.1088/0953-4075/26/21/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vušković, L. "Experiments with low-energy electrons scattered by polarized, excited sodium." Canadian Journal of Physics 74, no. 11-12 (November 1, 1996): 991–96. http://dx.doi.org/10.1139/p96-819.

Full text
Abstract:
Several crossed-beam experiments were performed to acquire information concerning collisions of low-impact-energy electrons with ground-state or laser-excited sodium atoms prepared in 32P3/2, F = 3 (MF = +3 or −3) polarized states. Results of these experiments are the azimuthal asymmetry of the differential cross sections between two polarized states in the elastic electron collision (3P → 3P) at selected scattering angles, absolute differential cross sections for elastic, inelastic, and superelastic scattering obtained with no normalization procedure involved, and total ionization cross sections in the threshold energy range.
APA, Harvard, Vancouver, ISO, and other styles
22

Masters, AT, RT Sang, WR MacGillivray, and MC Standage. "New Data from Laser Interrogation of Electron-Atom Collisions Experiments." Australian Journal of Physics 49, no. 2 (1996): 499. http://dx.doi.org/10.1071/ph960499.

Full text
Abstract:
Recent data from two methods in which high resolution laser radiation is used to assist in determining electron-atom collision parameters are presented. The electron superelastic method has yielded the first measurement of Stokes parameters for electron de-excitation of the 32D5/2–32P3/2,1/2 transition of atomic Na, the upper level having been optically prepared by resonant, stepwise excitation from the 32S1/2 ground level via the 32P3/2 level using two single mode lasers. As well, we report on the development of a model to determine the optical pumping parameters for superelastic scattering from the 32P3/2 level when it is prepared by two lasers exciting from the F = 1 and F = 2 states respectively of the 32S1/ 2 ground level. Data are also presented for collision parameters for the excitation of the 61So–61 PI transition of the I = 0 isotope of Hg by electrons of 50 eV incident energy. The technique employed for these measurements is the stepwise electron–laser excitation coincidence method, in which the electron excited atom is further excited by resonant laser radiation, and fluorescence photons emitted by relaxation from the laser excited state are detected in coincidence with the scattered electron.
APA, Harvard, Vancouver, ISO, and other styles
23

Hall, B. V., Y. Shen, A. J. Murray, M. C. Standage, W. R. MacGillivray, and I. Bray. "Superelastic electron scattering from laser excited rubidium at 20 eV incident energy." Journal of Physics B: Atomic, Molecular and Optical Physics 37, no. 5 (February 23, 2004): 1113–24. http://dx.doi.org/10.1088/0953-4075/37/5/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Снігурська, Т. А., М. О. Маргітич, and В. І. Марушка. "Excitation, ionization and superelastic scattering cross sections at electron interactions with metastable strontium atoms." Scientific Herald of Uzhhorod University.Series Physics 20 (June 30, 2007): 28–33. http://dx.doi.org/10.24144/2415-8038.2007.20.28-33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zetner, P. W., Y. Li, and S. Trajmar. "A measurement of electron impact coherence parameters by superelastic scattering from laser-excited138Ba (. . . 6s6p1P1)." Journal of Physics B: Atomic, Molecular and Optical Physics 25, no. 14 (July 28, 1992): 3187–99. http://dx.doi.org/10.1088/0953-4075/25/14/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zetner, P. W., S. Trajmar, G. Csanak, and R. E. H. Clark. "Problems associated with the measurement of coherence parameters: Superelastic electron scattering by laser-excitedBa138(...6s6pP11) atoms." Physical Review A 39, no. 11 (June 1, 1989): 6022–25. http://dx.doi.org/10.1103/physreva.39.6022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Farrell, P. M., W. R. MacGillivray, and M. C. Standage. "Calculation of the optical pumping parameters for electron-superelastic-scattering experiments from the sodium 32P3/2level." Physical Review A 44, no. 3 (August 1, 1991): 1828–35. http://dx.doi.org/10.1103/physreva.44.1828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Li, Y., and P. W. Zetner. "Electron impact coherence parameters for the (...6s5d1D2) to (...6s6p1P1) excitation in138Ba determined by superelastic scattering measurements." Journal of Physics B: Atomic, Molecular and Optical Physics 28, no. 23 (December 14, 1995): 5151–62. http://dx.doi.org/10.1088/0953-4075/28/23/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kato, H., H. Kawahara, M. Hoshino, H. Tanaka, L. Campbell, and M. J. Brunger. "Vibrational excitation functions for inelastic and superelastic electron scattering from the ground-electronic state in hot CO2." Chemical Physics Letters 465, no. 1-3 (November 2008): 31–35. http://dx.doi.org/10.1016/j.cplett.2008.09.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kato, H., M. Ohkawa, H. Tanaka, I. Shimamura, and M. J. Brunger. "Vibrational excitation functions for inelastic and superelastic electron scattering from the ground electronic state in hot N2O." Journal of Physics B: Atomic, Molecular and Optical Physics 44, no. 19 (September 13, 2011): 195208. http://dx.doi.org/10.1088/0953-4075/44/19/195208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Marushka, V. I., І. І. Shafranyosh, L. L. Shimon, S. P. Bogacheva, V. F. Gedeon, T. A. Zatsarinna, O. I. Zarsarinny, and T. M. Zajac. "Measurement and R-matrix calculation of superelastic electron-scattering cross-sections on the metastable (3s3p) 3P0,2states in Mg." Scientific Herald of Uzhhorod University.Series Physics 9 (July 15, 2001): 73–82. http://dx.doi.org/10.24144/2415-8038.2001.9.73-82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Williams, I. D., B. Srigengan, A. Platzer, J. B. Greenwood, W. R. Newell, and L. O'Hagan. "Superelastic scattering of electrons from Ar3+." Physica Scripta T73 (January 1, 1997): 121–22. http://dx.doi.org/10.1088/0031-8949/1997/t73/037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

McClelland, J. J., M. H. Kelley, and R. J. Celotta. "Superelastic scattering of spin-polarized electrons from sodium." Physical Review A 40, no. 5 (September 1, 1989): 2321–29. http://dx.doi.org/10.1103/physreva.40.2321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Scholten, R. E., T. Andersen, and P. J. O. Teubner. "Superelastic scattering of electrons from optically pumped sodium." Journal of Physics B: Atomic, Molecular and Optical Physics 21, no. 15 (August 14, 1988): L473—L476. http://dx.doi.org/10.1088/0953-4075/21/15/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Balashov, V. V., and A. N. Grum-Grzhimailo. "Inelastic and superelastic scattering of electrons from sodium." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 23, no. 2 (June 1992): 127–35. http://dx.doi.org/10.1007/bf01436734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Williams, I. D., J. B. Greenwood, and P. McGuinness. "Experimental observation of superelastic scattering of electrons from a positive ion." Journal of Physics B: Atomic, Molecular and Optical Physics 28, no. 17 (September 14, 1995): L555—L558. http://dx.doi.org/10.1088/0953-4075/28/17/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Balashov, V. V., A. N. Grum-Grzhimailo, and O. I. Klochkova. "Inelastic and superelastic scattering of electrons by sodium: the role of the imaginary part of the optical potential in the DWBA analysis of the 3S-3P transition." Journal of Physics B: Atomic, Molecular and Optical Physics 22, no. 24 (December 28, 1989): L669—L704. http://dx.doi.org/10.1088/0953-4075/22/24/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Slaughter, D. S., V. Karaganov, M. J. Brunger, P. J. O. Teubner, I. Bray, and K. Bartschat. "Superelastic electron scattering from laser-excited cesium atoms." Physical Review A 75, no. 6 (June 29, 2007). http://dx.doi.org/10.1103/physreva.75.062717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hussey, Martyn, Andrew Murray, William MacGillivray, and George C. King. "Superelastic Electron Scattering within a Magnetic Angle Changer: Determination of the Angular Momentum Transferred during Electron Excitation over All Scattering Angles." Physical Review Letters 99, no. 13 (September 28, 2007). http://dx.doi.org/10.1103/physrevlett.99.133202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Alnaser, A. S., A. L. Landers, D. J. Pole, S. Hossain, O. A. Haija, T. W. Gorczyca, J. A. Tanis, and H. Knutson. "Superelastic scattering of electrons from metastable He-likeC4+andO6+ions." Physical Review A 65, no. 4 (March 21, 2002). http://dx.doi.org/10.1103/physreva.65.042709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Závodszky, P. A., H. Aliabadi, C. P. Bhalla, P. Richard, G. Tóth, and J. A. Tanis. "Superelastic Scattering Of Electrons From Highly Charged Ions With Inner Shell Vacancies." Physical Review Letters 87, no. 3 (July 2, 2001). http://dx.doi.org/10.1103/physrevlett.87.033202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Moya, Xavier, David González-Alonso, Lluís Mañosa, Antoni Planes, V. O. Garlea, T. A. Lograsso, D. L. Schlagel, J. L. Zarestky, Seda Aksoy, and Mehmet Acet. "Lattice dynamics in magnetic superelastic Ni-Mn-In alloys: Neutron scattering and ultrasonic experiments." Physical Review B 79, no. 21 (June 30, 2009). http://dx.doi.org/10.1103/physrevb.79.214118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography