Academic literature on the topic 'Supercritical CO2 power cycle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Supercritical CO2 power cycle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Supercritical CO2 power cycle"

1

Yu, Xiangjun, Wenlei Lian, Ke Gao, Zhixing Jiang, Cheng Tian, Nan Sun, Hangbin Zheng, Xinrui Wang, Chao Song, and Xianglei Liu. "Solar Thermochemical CO2 Splitting Integrated with Supercritical CO2 Cycle for Efficient Fuel and Power Generation." Energies 15, no. 19 (October 6, 2022): 7334. http://dx.doi.org/10.3390/en15197334.

Full text
Abstract:
Converting CO2 into fuels via solar-driven thermochemical cycles of metal oxides is promising to address global climate change and energy crisis challenges simultaneously. However, it suffers from low energy conversion efficiency (ηen) due to high sensible heat losses when swinging between reduction and oxidation cycles, and a single product of fuels can hardly meet multiple kinds of energy demands. Here, we propose an alternative way to upsurge energy conversion efficiency by integrating solar thermochemical CO2 splitting with a supercritical CO2 thermodynamic cycle. When gas phase heat recovery (εgg) is equal to 0.9, the highest energy conversion efficiency of 20.4% is obtained at the optimal cycle high pressure of 260 bar. In stark contrast, the highest energy conversion efficiency is only 9.8% for conventional solar thermochemical CO2 splitting without including a supercritical CO2 cycle. The superior performance is attributed to efficient harvesting of waste heat and synergy of CO2 splitting cycles with supercritical CO2 cycles. This work provides alternative routes for promoting the development and deployment of solar thermochemical CO2 splitting techniques.
APA, Harvard, Vancouver, ISO, and other styles
2

Variny, Miroslav. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14, 7136." Energies 15, no. 5 (February 23, 2022): 1640. http://dx.doi.org/10.3390/en15051640.

Full text
Abstract:
The reconstruction of ageing thermal power plants with the possibility of their increased efficiency, prolonged service and decreased environmental impact is an intensely debated and researched topic nowadays. Among various concepts, the replacement of the steam cycle by a supercritical CO2 cycle is proposed with the prospect of reaching higher efficiencies at the same working fluid inlet parameters as the ultra-supercritical steam cycles. A paper published previously by Rogalev et al. (2021) analyzed the variants of supercritical coal power plant reconstruction to a supercritical CO2 cycle and ranked them according to the cycle efficiency. This contribution comments on the scope and applied method in that paper aiming to provide additional input relevant to the decision-making process on thermal power plant reconstruction to such a cycle.
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Enhui, Han Hu, Hangning Li, Chao Liu, and Jinliang Xu. "How to Construct a Combined S-CO2 Cycle for Coal Fired Power Plant?" Entropy 21, no. 1 (December 27, 2018): 19. http://dx.doi.org/10.3390/e21010019.

Full text
Abstract:
It is difficult to recover the residual heat from flue gas when supercritical carbon dioxide (S-CO2) cycle is used for a coal fired power plant, due to the higher CO2 temperature in tail flue and the limited air temperature in air preheater. The combined cycle is helpful for residual heat recovery. Thus, it is important to build an efficient bottom cycle. In this paper, we proposed a novel exergy destruction control strategy during residual heat recovery to equal and minimize the exergy destruction for different bottom cycles. Five bottom cycles are analyzed to identify their differences in thermal efficiencies (ηth,b), and the CO2 temperature entering the bottom cycle heater (T4b) etc. We show that the exergy destruction can be minimized by a suitable pinch temperature between flue gas and CO2 in the heater via adjusting T4b. Among the five bottom cycles, either the recompression cycle (RC) or the partial cooling cycle (PACC) exhibits good performance. The power generation efficiency is 47.04% when the vapor parameters of CO2 are 620/30 MPa, with the double-reheating-recompression cycle as the top cycle, and RC as the bottom cycle. Such efficiency is higher than that of the supercritical water cycle power plant.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Pan, Chuntian Gao, and Jianqiang Shan. "Development and Verification of a Transient Analysis Tool for Reactor System Using Supercritical CO2 Brayton Cycle as Power Conversion System." Science and Technology of Nuclear Installations 2018 (September 2, 2018): 1–14. http://dx.doi.org/10.1155/2018/6801736.

Full text
Abstract:
Supercritical CO2 Brayton cycle is a good choice of thermal-to-electric energy conversion system, which owns a high cycle efficiency and a compact cycle configuration. It can be used in many power-generation applications, such as nuclear power, concentrated solar thermal, fossil fuel boilers, and shipboard propulsion system. Transient analysis code for Supercritical CO2 Brayton cycle is a necessity in the areas of transient analyses, control strategy study, and accident analyses. In this paper, a transient analysis code SCTRAN/CO2 is developed for Supercritical CO2 Brayton Loop based on a homogenous model. Heat conduction model, point neutron power model (which is developed for nuclear power application), turbomachinery model for gas turbine, compressor and shaft model, and PCHE type recuperator model are all included in this transient analysis code. The initial verifications were performed for components and constitutive models like heat transfer model, friction model, and compressor model. The verification of integrated system transient was also conducted through making comparison with experiment data of SCO2EP of KAIST. The comparison results show that SCTRAN/CO2 owns the ability to simulate transient process for S-CO2 Brayton cycle. SCTRAN/CO2 will become an important tool for further study of Supercritical CO2 Bryton cycle-based nuclear reactor concepts.
APA, Harvard, Vancouver, ISO, and other styles
5

Ayub, Abubakr, Costante M. Invernizzi, Gioele Di Marcoberardino, Paolo Iora, and Giampaolo Manzolini. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles." Energies 13, no. 15 (August 4, 2020): 4014. http://dx.doi.org/10.3390/en13154014.

Full text
Abstract:
This study aims to provide a thermodynamic comparison between supercritical CO2 cycles and ORC cycles utilizing flue gases as waste heat source. Moreover, the possibility of using CO2 mixtures as working fluids in transcritical cycles to enhance the performance of the thermodynamic cycle is explored. ORCs operating with pure working fluids show higher cyclic thermal and total efficiencies compared to supercritical CO2 cycles; thus, they represent a better option for high-temperature waste heat recovery provided that the thermal stability at a higher temperature has been assessed. Based on the improved global thermodynamic performance and good thermal stability of R134a, CO2-R134a is investigated as an illustrative, promising working fluid mixture for transcritical power cycles. The results show that a total efficiency of 0.1476 is obtained for the CO2-R134a mixture (0.3 mole fraction of R134a) at a maximum cycle pressure of 200 bars, which is 15.86% higher than the supercritical carbon dioxide cycle efficiency of 0.1274, obtained at the comparatively high maximum pressure of 300 bars. Steam cycles, owing to their larger number of required turbine stages and lower power output, did not prove to be a suitable option in this application.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Tianye, Jingze Yang, Zhen Yang, and Yuanyuan Duan. "Thermo-economic optimization of supercritical CO2 Brayton cycle on the design point for application in solar power tower system." E3S Web of Conferences 242 (2021): 01002. http://dx.doi.org/10.1051/e3sconf/202124201002.

Full text
Abstract:
The supercritical CO2 Brayton cycle integrated with a solar power tower system has the advantages of high efficiency, compact cycle structure, strong scalability, and great power generation potential, which can positively deal with the energy crisis and global warming. The selection and optimization of design points are very important for actual operating situations. In this paper, the thermodynamic and economic models of the 10 MWe supercritical CO2 Brayton cycle for application in solar power tower system are established. Multi-objective optimizations of the simple recuperative cycle, reheating cycle, and recompression cycle at different compressor inlet temperature are completed. The thermal efficiency and the levelized energy cost are selected as the fitness functions. The ranges of the optimal compressor inlet pressure and reheating pressure on the Pareto frontier are analyzed. Finally, multiobjective optimizations and analysis of the supercritical CO2 Brayton cycle at different ambient temperature are carried out. This paper investigates the influence of the compressor inlet temperature and ambient temperature on the thermal efficiency and economic performance of the supercritical CO2 Brayton cycle.
APA, Harvard, Vancouver, ISO, and other styles
7

Valencia-Chapi, Robert, Luis Coco-Enríquez, and Javier Muñoz-Antón. "Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants." Applied Sciences 10, no. 1 (December 19, 2019): 55. http://dx.doi.org/10.3390/app10010055.

Full text
Abstract:
This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition.
APA, Harvard, Vancouver, ISO, and other styles
8

Reyes-Belmonte, Miguel Angel, and Francesco Rovense. "High-Efficiency Power Cycles for Particle-Based Concentrating Solar Power Plants: Thermodynamic Optimization and Critical Comparison." Energies 15, no. 22 (November 16, 2022): 8579. http://dx.doi.org/10.3390/en15228579.

Full text
Abstract:
This paper investigates and compares several highly efficient thermodynamic cycles that are suitable for coupling with particle-in-tube fluidized-bed solar receiver technology. In such a receiver, high-temperature particles are used as both a heat transfer fluid and a storage medium. A dense particle suspension (DPS) is created through an upward bubbling fluidized-bed (UBFB) flow inside the receiver tubes, which constitutes the “particle-in-tube” solar receiver concept. Reaching higher temperatures is seen as a key factor for future cost reductions in the solar plant, as this leads to both higher power conversion efficiency and increased energy storage density. Three advanced thermodynamic cycles are analyzed in this work: the supercritical steam Rankine cycle (s-steam), supercritical carbon dioxide cycle (s-CO2) and integrated solar combined cycle (ISCC). For each one, 100% solar contribution, which is considered the total thermal input to the power cycle, can be satisfied by the solar particle receiver. The main findings show that the s-CO2 cycle is the most suitable thermodynamic cycle for the DPS solar plant, exhibiting a net cycle efficiency above 50% for a moderate temperature range (680–730 °C). For the other advanced power cycles, 45.35% net efficiency can be achieved for the s-steam case, while the efficiency of the ISCC configuration is limited to 45.23% for the solar-only operation mode.
APA, Harvard, Vancouver, ISO, and other styles
9

Reyes-Belmonte, Miguel Angel, Rafael Guédez, and Maria José Montes. "Bibliometric Analysis on Supercritical CO2 Power Cycles for Concentrating Solar Power Applications." Entropy 23, no. 10 (September 30, 2021): 1289. http://dx.doi.org/10.3390/e23101289.

Full text
Abstract:
In recent years, supercritical CO2 power cycles have received a large amount of interest due to their exceptional theoretical conversion efficiency above 50%, which is leading a revolution in power cycle research. Furthermore, this high efficiency can be achieved at a moderate temperature level, thus suiting concentrating solar power (CSP) applications, which are seen as a core business within supercritical technologies. In this context, numerous studies have been published, creating the need for a thorough analysis to identify research areas of interest and the main researchers in the field. In this work, a bibliometric analysis of supercritical CO2 for CSP applications was undertaken considering all indexed publications within the Web of Science between 1990 and 2020. The main researchers and areas of interest were identified through network mapping and text mining techniques, thus providing the reader with an unbiased overview of sCO2 research activities. The results of the review were compared with the most recent research projects and programs on sCO2 for CSP applications. It was found that popular research areas in this topic are related to optimization and thermodynamics analysis, which reflects the significance of power cycle configuration and working conditions. Growing interest in medium temperature applications and the design of sCO2 heat exchangers was also identified through density visualization maps and confirmed by a review of research projects.
APA, Harvard, Vancouver, ISO, and other styles
10

Akramieh, Elham, and Antonio Giuffrida. "Assessment of closed cycles operating with supercritical CO2 as bottoming of small combustion turbines." Journal of Physics: Conference Series 2385, no. 1 (December 1, 2022): 012106. http://dx.doi.org/10.1088/1742-6596/2385/1/012106.

Full text
Abstract:
Abstract This work investigates the performance of supercritical CO2 power cycles bottoming small combustion turbines. As a matter of fact, the maximum power output of the topping cycle is limited to 10 MW, since there is a great number of commercial combustion turbine units for which the conventional combined cycle architecture with a bottoming steam power plant is not convenient. In detail, the partial heating cycle is the layout chosen for this study according to the interesting trade-off between heat recovery and cycle efficiency, with a limited number of components. Considering the investigated range of power production, single-stage radial turbomachines are selected and their efficiency values are not fixed at first glance but result from actual size and running conditions, based on flow rates, enthalpy variations as well as rotational speeds. Focusing on a number of cases, interesting considerations about the size of the components of the supercritical CO2 power cycle are possible thanks to the theory of similitude.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Supercritical CO2 power cycle"

1

Freas, Rosemarv M. "Analysis of required supporting systems for the Supercritical CO2 power conversion system." Thesis, Cambridge Massachusetts Institute of Technology, 2007. http://hdl.handle.net/10945/2992.

Full text
Abstract:
Recently, attention has been drawn to the viability of using S-CO(2) as a working fluid in modern reactor designs. Near the critical point, CO2 has a rapid rise in density allowing a significant reduction in the compressor work of a closed Brayton Cycle. Therefore, 45% efficiency can be achieved at much more moderate temperatures than is optimal for the helium Brayton cycles. An additional benefit of the S-CO2 system is its universal applicability as an indirect secondary Power Conversion System (PCS) coupled to most GEN-IV concept reactors, as well as fusion reactors. The United States DOE's GNEP is now focusing on the liquid Na cooled primary as an alternative to conventional Rankine steam cycles. This primary would also benefit from being coupled to an S-CO2 PCS. Despite current progress on designing the S-CO2 PCS, little work has focused on the principal supporting systems required. Many of the required auxiliary systems are similar to those used in other nuclear or fossil-fired units; others have specialized requirements when CO2 is used as the working fluid, and are therefore given attention in this thesis. Auxiliary systems analyzed within this thesis are restricted to those specific to using CO2 as the working fluid. Particular systems discussed include Coolant Make-up and Storage, Coolant Purification, and Coolant Leak Detection.
Contract number: N62271-97-G-0026.
US Navy (USN) author
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Qiao. "Conception and optimization of supercritical CO2 Brayton cycles for coal-fired power plant application." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0080/document.

Full text
Abstract:
L'amélioration des systèmes énergétiques est considérée comme un levier technologique pour répondre aux défis liés à la croissance de la demande d’électricité et des émissions des gaz à effet de serre. Les futures centrales devraient présenter une intégration thermique plus flexible et des sources de chaleur mixtes possibles. Une des solutions fiables consiste à utiliser un cycle de Brayton au CO2 supercritique (CO2-SC), un tel cycle à haut rendement est théoriquement prometteur pour les applications nucléaires, fossiles et solaires thermiques. Un des principaux obstacles au déploiement du cycle de Brayton au CO2-SC est de justifier sa faisabilité, sa viabilité et son potentiel à l’échelle industrielle. Dans ce contexte deux axes de recherche ont été identifiées : • Une sélection rigoureuse de l’équation d’état qui permet de représenter les propriétés d’intérêt du CO2-SC. • Une nouvelle méthodologie pour l’optimisation des centrales électriques, permettant de sélectionner automatiquement le procédé optimal parmi une grande quantité de configurations possibles (dénomme superstructure). Les résultats de la première partie de cette thèse mettent en lumière que l’équation de SW est pertinente pour limiter l’impact de l’imprécision de l’équation d’état sur le dimensionnement du procédé. Dans cette thèse, un simulateur de procédé commercial, ProSimPlus a été combiné avec un solveur type évolutionnaire (MIDACO) afin d’effectuer des optimisations superstructure. Premièrement, le critère d’optimisation est de maximiser le rendement énergétique du procédé. Dans un deuxième temps, on cherche simultanément à minimiser les coûts du procédé. Pour ce faire, des fonctions de coût internes à EDF ont été utilisées afin de permettre l’estimation des coûts d'investissement (CAPEX), des dépenses opérationnelles (OPEX) et du coût actualisé de l'électricité (LCOE)
Efficiency enhancement in power plant can be seen as a key lever in front of increasing energy demand. Nowadays, both the attention and the emphasis are directed to reliable alternatives, i.e., enhancing the energy conversion systems. The supercritical CO2 (SC-CO2) Brayton cycle has recently emerged as a promising solution for high efficiency power production in nuclear, fossil-thermal and solar-thermal applications. Currently, studies on such a thermodynamic power cycle are directed towards the demonstration of its reliability and viability before the possible building of an industrial-scale unit. The objectives of this PhD can be divided in two main parts: • A rigorous selection procedure of an equation of state (EoS) for SC-CO2 which permits to assess influences of thermodynamic model on the performance and design of a SC-CO2 Brayton cycle. • A framework of optimization-based synthesis of energy systems which enables optimizing both system structure and the process parameters. The performed investigations demonstrate that the Span-Wagner EoS is recommended for evaluating the performances of a SC-CO2 Brayton cycle in order to avoid inaccurate predictions in terms of equipment sizing and optimization. By combining a commercial process simulator and an evolutionary algorithm (MIDACO), this dissertation has identified a global feasible optimum design –or at least competitive solutions– for a given process superstructure under different industrial constraints. The carried out optimization firstly base on cycle energy aspects, but the decision making for practical systems necessitates techno-economic optimizations. The establishment of associated techno-economic cost functions in the last part of this dissertation enables to assess the levelized cost of electricity (LCOE). The carried out multi-objective optimization reflects the trade-off between economic and energy criteria, but also reveal the potential of this technology in economic performance
APA, Harvard, Vancouver, ISO, and other styles
3

Riotto, Antonio. "Analisi termodinamica di cicli di potenza complessi a CO2 supercritica." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22430/.

Full text
Abstract:
La finalità di questo lavoro di tesi è la valutazione quantitativa delle prestazioni dei cicli Brayton a CO2 supercritica. Per dare fondamento alle motivazioni che spingono ad un tale studio, il punto di partenza è stato analizzare la statistica riguardante le potenzialità del calore di scarto. Un passo ulteriore è stato non solo quantificare l’energia recuperabile, ma anche avere tabulati con le temperature alle quali tali energie sono disponibili in un panorama industriale che coinvolge diversi settori produttivi. Per ogni settore produttivo è stato possibile anche associare, ad un suo j-esimo processo, una fascia di temperatura alla quale il fluido viene scartato, come liquido o come gas. Successivamente, è stato necessario mettere in luce le proprietà della CO2 . Esso si mostra infatti compatibile con un utilizzo all’interno di un ciclo Brayton, e può anche presentare dei vantaggi rispetto ai fluidi dei cicli tradizionali: la sua densità è grande a tal punto da ottenere impianti con potenze in uscita elevate e ingombri particolarmente ridotti. Si è passati poi ad una rassegna di tre layout, uno semplice e due più complessi, studiati da più autori, con conclusioni complementari. Il capitolo successivo, quello della simulazione dei cicli di potenza in ambiente Aspen Hysys, è stato suddiviso in due parti. Nella prima parte sono presenti istruzioni più di carattere operativo per l’utilizzo del software. Nella seconda parte vengono invece mostrati i risultati delle simulazioni, con l’obiettivo di massimizzare il rendimento totale di recupero termico ηtot . Tale obiettivo è stato conseguito al variare di alcuni parametri, come temperatura di ingresso dei fumi nello scambiatore principale (Tfumi), temperatura di ingresso in turbina ( TIT ), pressione massima di ciclo (pmax), e potenza netta erogata dall’impianto ( Pnet ).
APA, Harvard, Vancouver, ISO, and other styles
4

Stene, Henrik Sørskår, and Ole Marius Moen. "Power Plant with CO2 Capture based on PSA Cycle." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26240.

Full text
Abstract:
Two coal-fired power plants with CO2 capture by Pressure Swing Adsorption (PSA) havebeen modeled and simulated. The two power plants considered were IntegratedGasification Combined Cycle (IGCC) and conventional Pulverized Coal Combustion (PCC). Amathematical model of the PSA process for each of the power plants was developed and thegoal was to evaluate the feasibility of PSA as a technology for decarbonisation. Theperformance with CO2 capture by PSA was compared to a reference plant without CO2capture and to a power plant with CO2 capture by absorption, which is considered as thebenchmark technology. The size and number of the PSA columns were estimated todetermine the footprint.For the PCC power plant, the PSA model was a two-stage process consisting of a front and a tail stage. Two-stages mean that it consisted of two consecutive PSA processes. The front stage was a three-bed, five-step Skarstrom process with rinse. The tail stage was a two-bed, five-step Skarstrom process with pressure equalization. Zeolite 5A was used as adsorbent. For a specified capture rate of 90.0 %, the process achieved a purity of 96.4 % and a specific power consumption of 1.3 MJ/kgCO2. The net plant efficiency dropped 16.6 percentage points from 45.3 % to 28.7 % when introducing CO2 capture by PSA. In comparison, the PCC plant using absorption achieved a net plant efficiency of 33.4 %. The results indicate that the current state of the art PSA technology for decarbonisation as an alternative to absorption is not realistic for PCC power plants.For the IGCC power plant, the PSA model was a seven-bed, twelve-step Skarstromconfiguration with four pressure equalization steps using activated carbon as adsorbent. The process achieved a purity of 87.8 % and a capture rate of 86.3 % with negligible power consumption. The PSA process did not satisfy the performance targets of 90 % recovery and 95.5 % purity, and due to the low purity it is uncertain whether or not transport and storage of CO2 is at all feasible. The net plant efficiency dropped 12.5 percentage points from 47.3 % to 34.8 %. In comparison the IGCC plant with absorption achieved a net plant efficiency of 36.4 %. The results showed that PSA as a capture technology for IGCC power plants could not perform quite as well as absorption. However, PSA as a capture technology could have a potential if the purity could be increased, and is therefore more promising than PSA for PCC power plants.
APA, Harvard, Vancouver, ISO, and other styles
5

Wangen, Dan Jakob. "Life Cycle Assessment of Power Generation Technologies with CO2 Capture." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19393.

Full text
Abstract:
Carbon Capture and Storage has large a potential to mitigating the CO2 emissions caused by fossil fuel powered power plants. CCS reduces the energy efficiency of the plant and increases the demand on chemicals and infrastructure. It is though not only the direct emissions from the power plants that have an impact on the environment. The entire supply chain of the power plant has an impact, and it is therefore necessary to evaluate the entire life cycle of the plant. This thesis consists of a full process LCA of post-combustion absorption based carbon capture and storage (CCS) technologies for both coal power plants and natural gas power plants. The assessed CCS technologies are based on the solvents MEA, MDEA and chilled ammonia. MEA is the most commonly used solvent in post-combustion capture, while MDEA and chilled ammonia represents novel CCS technologies that are still under development. It was shown that a 90% capture rate was possible for all of the assessed capture technologies. It was further shown that the total global warming potential (GWP) could be decreased with above 60%. 90% reduction is not possible because of indirect emissions in the supply chain. The reduction in GWP comes at a cost of decreasing energy efficiency, which further leads to an increase in consumption of materials and infrastructure. This causes the non-GHG related impacts to increase, compared to a base scenario without CCS. CCS technology based on MDEA was calculated to be the technology with the lowest impact, mainly because it has the lowest energy requirement. Chilled ammonia was assessed as the technology with the largest impacts. The reason for this is that the chilling process is very energy intensive and therefore decreases the efficiency more, compared to the other technologies assessed. Also the large emissions of ammonia have a large impact on the acidification potential and the marine eutrophication potential.
APA, Harvard, Vancouver, ISO, and other styles
6

Gibbs, Jonathan Paul. "Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44765.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2008.
"June 2008."
Includes bibliographical references.
The supercritical carbon dioxide (S-CO₂) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and proposes several "Third Generation" plant layouts for power ratings ranging between 20 and 1200 MWe for the recompression cycle. A 20 MWe simple cycle layout was also developed. The cycle designs are characterized by a dispersed component layout in which a single shaft turbomachinery train is coupled to parallel arrays of multiple printed circuit heat exchanger modules. This configuration has arrangement benefits in terms of modularity, inspectability, repairability and replaceability. Compared to the prior second generation dispersed layouts, its lower ductwork pressure drop confers approximately 2% higher thermal efficiency. Two alternative S-CO₂ cycle designs for medium power applications were developed using an in-house optimization computer code and Solid Edge software. The first design is a recompression cycle derived from the 300 MWe design developed at MIT for Generation IV reactors. The design employs one turbine, two compressors (main and recompression) working in parallel and two recuperators (high and low temperature) and maximizes cycle efficiency while striving for a small plant footprint. The second design is a simple S-CO₂ power cycle, which has only one turbine, one compressor, and one recuperator. The main focus of the simple S-CO₂ design is cycle compactness and simplicity while achieving still attractive efficiency. Extensive sensitivity studies were performed for both the medium power recompression and simple S-CO₂ cycles to reveal areas for performance improvement, or performance degradation. Cycle efficiency is most sensitive to turbine inlet temperature.
(cont.) Peak cycle pressure is also an important parameter affecting cycle efficiency, although to a smaller extent than turbine inlet temperature. Higher pressure gives higher efficiency, but this gradually saturates around 28 MPa. Other sensitivity studies included turbomachinery performance, cooling water temperature, and heat exchanger fouling and plugging The reference parameters chosen are a 650°C turbine inlet temperature and 20 MPa peak cycle pressure (compressor outlet) because they reach a high thermodynamic efficiency (~/~47-48%) while staying within materials limitations. In order to couple the cycle to many of the Generation IV nuclear reactors a second reference case was chosen with a turbine inlet temperature of 550°C and a peak cycle pressure of 20 MPa.
by Jonathan Paul Gibbs.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

THORSSON, BJÖRN J., and HADY R. SOLIMAN. "Supercritical Carbon Dioxide Brayton Cycle for Power Generation : Utilizing Waste Heat in EU Industries." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282919.

Full text
Abstract:
The industrial sector accounts for approximately 30% of the global total energy consumption and up to 50% of it is lost as waste heat. Recovering that waste heat from industries and utilizing it as an energy source is a sustainable way of generating electricity. Supercritical CO2 (sCO2) cycles can be integrated with various heat sources including waste heat. Current literature primarily focuses on the cycle’s performance without investigating the economics of the system. This is mainly due to the lack of reliable cost estimates for the cycle components. Recently developed cost scaling models have enabled performing more accurate techno-economic studies on these systems. This enables a shift in focus from plant efficiency to economics as a driver for commercialization of sCO2 technology. This work aims to develop a techno-economic model for these waste-heat-to-power systems. Based on the literature, waste heat from different industries is calculated, showing that the four industries with the greatest potential for waste heat recovery are cement, iron and steel, aluminum and gas compressor stations. Six different sCO2 cycle configurations were developed and simulated for these four industries. The techno-economic model optimizes for the highest Net Present Value (NPV) using an Artificial Bee Colony algorithm. The optimization variables are the pressure levels, split ratios, recuperators effectiveness, condenser temperature and the turbine inlet temperature limited by the heat source. The results show a vast potential for industries to cut down costs using this system. Out of the four industries modeled, a waste heat recovery system in an iron and steel factory yielded the highest NPV. Results show that the integration of sCO2 cycle in the cement industry could help reduce their waste heat by 60%, whilst simultaneously enabling them to cover up to 56% of their electricity demand. The payback period for the four industries varies between 6 to 9 years. Furthermore, simple recuperated sCO2 cycles with preheating are more economical than recompression cycles. Even though recompression cycles have higher thermal efficiency, they are limited by the temperature glide in the waste heat exchanger. This analysis could help investors and engineers take more informed decisions to increase the efficiency and economic return on investment for sCO2 cycles and heat recovery at industrial sites. To encourage adoption of supercritical CO2 cycles, a demo is needed along with more research for higher temperature applications with special attention to mechanical integrity.
Industrisektorn står för cirka 30% av den globala totala energiförbrukningen och upp till 50% av den går förlorad som spillvärme. Återskapa att spillvärme från industrier och använda det som energikälla är ett hållbart sätt att producera el. Superkritiska CO2 (sCO2) cykler kan integreras med olika värmekällor inklusive spillvärme. Nuvarande litteratur fokuserar främst på cykelens prestanda utan att undersöka systemets ekonomi. Detta beror främst på bristen på tillförlitliga kostnadsberäkningar för cykelkomponenterna. Baserat på nyligen utvecklade kostnadsskalningsmodeller är det möjligt att utföra mer exakta teknikekonomiska studier på dessa system. Detta möjliggör en förskjutning i fokus från cykeleffektivitet till ekonomi som drivkraft för kommersialisering av sCO2 teknologi. Detta arbete syftar till att utveckla en teknisk ekonomisk modell för dessa avfall-värme-till-kraftsystem. Baserat på litteraturen beräknas spillvärme från olika industrier, vilket visar att de fyra industrierna med störst potential för återvinning av spillvärme är cement, järn och stål, aluminium och gaskompressorstationer. Sex olika sCO2 konfigurationer utvecklades och simulerades för dessa fyra industrier. Den teknisk-ekonomiska modellen optimerar för det högsta Net Present Value (NPV) med hjälp av en artificiell bi-kolonialgoritm. Optimeringsvariablerna är pressure levels, delade förhållanden, recuperatorseffektivitet, kondensortemperatur och turbininloppstemperaturen begränsad av värmekällan. Resultaten visar en stor potential för industrier att sänka kostnaderna med detta system. Av de fyra modellerna industrin gav ett återvinningssystem i en järn och stålfabrik den högsta NPV. Resultaten visar att integrationen av sCO2 cykeln i cementindustrin kan bidra till att minska deras spillvärme med 60%, samtidigt som de gör det möjligt för dem att täcka upp till 56% av deras elbehov. Återbetalningsperioden för de fyra branscherna varierar mellan 6 till 9 år. Dessutom är simple recuperated sCO2 cykler med förvärmning mer ekonomiska än recompressioncykler. Trots att recompressioncykler har högre termisk effektivitet, begränsas de av temperaturglidningen i spillvärmeväxlaren. Denna analys kan hjälpa investerare och ingenjörer att fatta mer informerade beslut för att öka effektiviteten och ekonomiska avkastningen på investeringar för sCO2 cykler och värmeåtervinning på industriområden. För att uppmuntra antagandet av superkritiska CO2 cykler krävs en demo tillsammans med mer forskning för högre temperaturapplikationer med särskild uppmärksamhet på mekanisk integritet.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Chen. "Thermodynamic Cycles using Carbon Dioxide as Working Fluid : CO2 transcritical power cycle study." Doctoral thesis, KTH, Tillämpad termodynamik och kylteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50261.

Full text
Abstract:
The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades). Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozonedepleting potential (ODP) and low global warming potential (GWP). It is also inexpensive, non‐explosive, non‐flammable and abundant in nature. At the same time, CO2 has advantages in use as a working fluid in low‐grade heat resource recovery and energy conversion from waste heat, mainly because it can create a better matching to the heat source temperature profile in the supercritical region to reduce the irreversibility during the heating process. Nevertheless, the research in such applications is very limited. This study investigates the potential of using carbon dioxide as a working fluid in power cycles for low‐grade heat source/waste heat recovery. At the beginning of this study, basic CO2 power cycles, namely carbon dioxide transcritical power cycle, carbon dioxide Brayton cycle and carbon dioxide cooling and power combined cycle were simulated and studied to see their potential in different applications (e.g. low‐grade heat source applications, automobile applications and heat and power cogeneration applications). For the applications in automobile industries, low pressure drop on the engine’s exhaust gas side is crucial to not reducing the engine’s performance. Therefore, a heat exchanger with low‐pressure drop on the secondary side (i.e. the gas side) was also designed, simulated and tested with water and engine exhaust gases at the early stage of the study (Appendix 2). The study subsequently focused mainly on carbon dioxide transcritical power cycle, which has a wide range of applications. The performance of the carbon dioxide transcritical power cycle has been simulated and compared with the other most commonly employed power cycles in lowgrade heat source utilizations, i.e. the Organic Rankin Cycle (ORC). Furthermore, the annual performance of the carbon dioxide transcritical power cycle in utilizing the low‐grade heat source (i.e. solar) has also been simulated and analyzed with dynamic simulation in this work. Last but not least, the matching of the temperature profiles in the heat exchangers for CO2 and its influence on the cycle performance have also been discussed. Second law thermodynamic analyses of the carbon dioxide transcritical power systems have been completed. The simulation models have been mainly developed in the software known as Engineering Equation Solver (EES)1 for both cycle analyses and computer‐aided heat exchanger designs. The model has also been connected to TRNSYS for dynamic system annual performance simulations. In addition, Refprop 7.02 is used for calculating the working fluid properties, and the CFD tool (COMSOL) 3 has been employed to investigate the particular phenomena influencing the heat exchanger performance.
QC 20111205
APA, Harvard, Vancouver, ISO, and other styles
9

Schroder, Andrew U. "A Study of Power Cycles Using Supercritical Carbon Dioxide as the Working Fluid." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1461592844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rieger, Mathias. "Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-150522.

Full text
Abstract:
The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Supercritical CO2 power cycle"

1

Chan, S. C. Elimination of CO2 emissions from fossil fuel power plants using closed cycle combustion. Manchester: UMIST, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

ASME. Print Proceedings of the ASME Turbo Expo 2018 : Turbomachinery Technical Conference and Exposition : Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. American Society of Mechanical Engineers, The, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

ASME. Print Proceedings of the ASME Turbo Expo 2017 : Turbomachinery Technical Conference and Exposition : Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. A S M E Press, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

ASME. Print Proceedings of the ASME Turbo Expo 2019 : Turbomachinery Technical Conference and Exposition : Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. American Society of Mechanical Engineers, The, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

of, American Society. Print Proceedings of the ASME Turbo Expo 2015 : Turbine Technical Conference and Exposition : Volume 9: Oil and Gas Applications, Supercritical CO2 Power Cycles, Wind Energy. A S M E Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Recent Advancement of Thermal Fluid Engineering in the Supercritical CO2 Power Cycle. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03943-017-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rez, Peter. Electrical Power Generation: Fossil Fuels. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.003.0004.

Full text
Abstract:
Nearly all electrical power is generated by rotating a coil in a magnetic field. In most cases, the coil is turned by a steam turbine operating according to the Rankine cycle. Water is boiled and heated to make high-pressure steam, which drives the turbine. The thermal efficiency is about 30–35%, and is limited by the highest steam temperature tolerated by the turbine blades. Alternatively, a gas turbine operating according to the Brayton cycle can be used. Much higher turbine inlet temperatures are possible, and the thermal efficiency is higher, typically 40%. Combined cycle generation, in which the hot exhaust from a gas turbine drives a Rankine cycle, can achieve thermal efficiencies of almost 60%. Substitution of coal-fired by combined cycle natural gas power plants can result in significant reductions in CO2 emissions.
APA, Harvard, Vancouver, ISO, and other styles
8

MARROQUÍN-DE JESÚS, Ángel, Juan Manuel OLIVARES-RAMÍREZ, Andrés DECTOR-ESPINOZA, and Luis Eduardo CRUZ-CARPIO. CIERMMI Women in Science Biology, Chemistry and Life Sciences Handbook T-XIV. ECORFAN-Mexico, S.C., 2021. http://dx.doi.org/10.35429/h.2021.14.1.119.

Full text
Abstract:
This volume, Women in Science T-XIV-2021 contains 7 refereed chapters dealing with these issues, chosen from among the contributions, we gathered some researchers and graduate students from the 32 states of our country. We thank the reviewers for their feedback that contributed greatly in improving the book chapters for publication in these proceedings by reviewing the manuscripts that were submitted. As first chapter, Martínez, Bravo, Sánchez and Montoya present Effect of the consumption of Stevia rebaudiana Bertoni as a natural and artificial sweetener on fatigue and oxidative stress of skeletal muscle, as second chapter, Hernández, Ramírez, Chávez and Oliart, will talk about Cashew bagasse (Anacardium occidentale L. ) as a source of fiber-antioxidant and its possible use in lipoinflammation models as the third chapter, Marcos, Ramirez, Oliart, and Guadarrama present The relevance of the source of animal or vegetable proteins on the metabolic syndrome and its comorbidities, as the fourth chapter, Damián, Rivera, Lizárraga and Vázquez. propose Wanderings of a magic element: the biogeochemical cycle of manganese, as the fifth chapter, Sánchez, Paniagua, Temiche and Alexander, perform Methods of physical control of pathogenic microorganisms in hospital areas, as the sixth chapter, Paniagua, Sánchez, Corro and Alexander develop Use of power ultrasound, supercritical fluids and membrane technology to obtain and/or preserve biological products for clinical use, and as the last chapter, Estrada, Figueroa, Sierra and Aguilar, focus on Obtaining and characterization of the ethanolic extract of the leaves of the Tradescantia Spathacea SW.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Supercritical CO2 power cycle"

1

Singh, Ramneek, Rupinder Pal Singh, and Dibakar Rakshit. "Supercritical CO2 cycle powered by solar thermal energy." In Hybrid Power Cycle Arrangements for Lower Emissions, 45–72. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003213741-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muto, Yasushi, and Yasuyoshi Kato. "Optimal Cycle Scheme of Direct Cycle Supercritical CO2 Gas Turbine for Nuclear Power Generation Systems." In Challenges of Power Engineering and Environment, 86–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rothermel, Sergej, Martin Grützke, Xaver Mönnighoff, Martin Winter, and Sascha Nowak. "Electrolyte Extraction—Sub and Supercritical CO2." In Sustainable Production, Life Cycle Engineering and Management, 177–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70572-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamaguchi, Hiroshi, and Xin-Rong Zhang. "Development of Supercritical CO2 Solar Rankine Cycle System." In Lecture Notes in Energy, 3–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26950-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kudoh, Yuki, and Akito Ozawa. "Life Cycle Carbon Dioxide Emissions from Ammonia-Based Power Generation Technology." In CO2 Free Ammonia as an Energy Carrier, 655–65. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4767-4_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Shujuan, Yinying Chen, Ping Zhong, Li Jia, and Yingxin Zhu. "Life Cycle Analysis of CO2 Control Technology: Comparison of Coal-Fired Power with Renewable Energy Power." In Cleaner Combustion and Sustainable World, 1291–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olaleye, Akeem K., Eni Oko, Meihong Wang, and Gregg Kelsall. "Dynamic Modelling and Analysis of Supercritical Coal-Fired Power Plant Integrated with Post-combustion CO2 Capture." In Clean Coal Technology and Sustainable Development, 359–63. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krishnan, R. Gokula, R. Prasanna, Y. Robin, B. Jeeva, and P. Rahul. "Numerical Analysis: Cross-Section Optimization of Printed Circuit Heat Exchanger Using Supercritical CO2 for Low Temperature Regenerator of Brayton Cycle." In Lecture Notes in Mechanical Engineering, 45–61. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6945-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olaleye, Akeem K., and Meihong Wang. "Conventional and Advanced Exergy Analysis of Post-combustion CO2 Capture in the Context of Supercritical Coal-Fired Power Plant." In Exergy for A Better Environment and Improved Sustainability 1, 1235–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mao, Jianxiong. "Ultra-supercritical (USC) Technology—The Best Practical and Economic Way to Reduce CO2 Emissions from Coal Fired Power Plants." In Cleaner Combustion and Sustainable World, 11–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Supercritical CO2 power cycle"

1

Fuller, Robert, Jason Preuss, and Jeff Noall. "Turbomachinery for Supercritical CO2 Power Cycles." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68735.

Full text
Abstract:
Supercritical CO2 (S-CO2) power cycles offer high plant efficiencies and beneficial economics for variety of heat sources. Nuclear, solar, waste heat, energy storage, and clean coal combustion are some of the applications under consideration for S-CO2 power production. Different types of cycles, topping and bottoming, have been conceptualized based on the heat source. These cycles have the possibility of being economically beneficial and competitive against incumbent steam cycles, primarily due to reduced material costs. Often the turbo-machinery capabilities are overlooked during the cycle design process, or are not well understood. A method and guideline for turbo machinery selection is offered. Several examples are offered to give the S-CO2 cycle designer to judge the compatibility of the turbo-machinery with the overall system including type, size, and efficiency. The guideline includes turbo machinery design limitations. Understanding the turbo machinery implications relative to cycle design will allow the system designer to optimize the plant for efficiency and positive economic outcome.
APA, Harvard, Vancouver, ISO, and other styles
2

Beck, Griffin, David Ransom, and Kevin Hoopes. "A Supercritical CO2 Combined Power and Liquefaction Cycle." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91371.

Full text
Abstract:
Abstract Natural gas production has increased dramatically in recent years due to advances in horizontal drilling and hydraulic fracturing techniques. There are still challenges that must be addressed by industry to better utilize these abundant natural gas resources. For example, due to the cost and complexity with piping installations from remote well sites to processing facilities (should they exist), natural gas is often flared at the site whereas the liquid hydrocarbons are stored in holding tanks. For the natural gas that is recovered and processed, there are currently economic benefits to exporting the gas to international markets, provided that the gas can be liquefied and shipped. While the number of liquefaction facilities has increased in recent years, additional liquefaction plants are needed. This paper introduces a novel liquefaction cycle that utilizes a supercritical carbon dioxide (sCO2) power cycle to provide power and initial stages of refrigeration to a natural gas liquefaction cycle. The liquefaction cycle uses a flow of CO2 extracted from the power cycle as well as natural gas to provide several stages of refrigeration capable of liquefying the process stream. The combined sCO2 power and liquefaction cycle is described in detail and initial cycle analyses are presented. The cycle performance is compared to small-scale natural gas liquefaction cycles and is shown to provide comparable performance to the reviewed cycles. Due to the compact nature of the sCO2 power cycle equipment, the sCO2 liquefaction cycle described herein can provide small, modular liquefaction plants that can be employed at individual well sites to liquefy and store the natural gas as opposed to flaring the gas.
APA, Harvard, Vancouver, ISO, and other styles
3

Dostal, Vaclav, Michael J. Driscoll, Pavel Hejzlar, and Yong Wang. "Supercritical CO2 Cycle for Fast Gas-Cooled Reactors." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-54242.

Full text
Abstract:
Brayton cycles are currently being extensively investigated for possible use with nuclear reactors in order to reduce capital cost, shorten construction period and increase nuclear power plant efficiency. The main candidates are the well-known helium Brayton cycle and the less familiar supercritical CO2 cycle, which has been given increased attention in the past several years. The main advantage of the supercritical CO2 cycle is comparable efficiency with the helium Brayton cycle at significantly lower temperature (550°C/823K), but higher pressure (20MPa/200 normal atmospheres). By taking advantage of the abrupt property changes near the critical point of CO2 the compression work can be reduced, which results in a significant efficiency improvement. Among the surveyed compound cycles the recompression cycle offers the highest efficiency, while still retaining simplicity. The turbomachinery is highly compact and achieves efficiencies of more than 90%. Preliminary assessment of the control scheme has been performed as well. It was found that conventional inventory control could not be applied to the supercritical CO2 recompression cycle. The conventional bypass control is applicable. The reference cycle achieves 46% thermal efficiency at the compressor outlet pressure of 20MPa and turbine inlet temperature of 550°C. The sizing of the heat exchangers and turbomachinery has been performed. The recuperator specific volume is 0.39m3/MWe and pre-cooler specific volume 0.08m3/MWe. For the reference 600MWth reactor this translates to ∼ 99m3 heat exchanger core for the recuperator and ∼ 21m3 for the pre-cooler. Overall the cycle offers an attractive alternative to the steam cycle. The supercritical CO2 cycle is well suited to any type of nuclear reactor with core outlet temperature above ∼ 500°C.
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Zhangpeng, Yang Zhao, Fenglei Niu, and Daogang Lu. "Supercritical CO2 Power Cycle for Small Modular Reactor." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66103.

Full text
Abstract:
Most Gen IV reactors have high operating temperature to increase power plant efficiency as well as for hydrogen production. The widely used steam Rankine cycle is not suitable for Gen IV Reactors because of low turbine inlet temperature or high turbine inlet temperature (649 °C) with extreme high pressure (34 MPa) by using ultra-supercritical (USC) steam cycle. Supercritical CO2 recompressing cycle can achieve a competitively high thermal efficiency with turbine inlet temperature at 500–600 °C and turbine inlet pressure at 20 MPa. However, this operating pressure is still too high to limit its application in power cycle of nuclear power plant. A combined recompressing cycle and dual expansion turbine technology is employed to reduce the operating pressure for nuclear power plant and increase thermal efficiency. Besides, sensitive analysis is performed for three kinds of S-CO2 power cycle. The results show that the combined recompressing cycle and dual expansion turbine technology is effective and suitable for Gen IV reactors with relatively lower reactor operating pressure (10–15MPa) and high thermal efficiency.
APA, Harvard, Vancouver, ISO, and other styles
5

Sathish, Sharath, Pramod Kumar, Logesh Nagarathinam, Lokesh Swami, Adi Narayana Namburi, Venkata Subbarao Bandarupalli, and Pramod Chandra Gopi. "Brayton Cycle Supercritical CO2 Power Block for Industrial Waste Heat Recovery." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2347.

Full text
Abstract:
Abstract The Brayton cycle based supercritical CO2 (sCO2) power plant is an emerging technology with benefits such as; higher cycle efficiency, smaller component sizes, reduced plant footprint, lower water usage, etc. There exists a high potential for its applicability in waste heat recovery cycles, either as bottoming cycles for gas turbines in a combined cycle or for industrial waste heat recovery in process industries such as iron & steel, cement, paper, glass, textile, fertilizer and food manufacturing. Conventionally steam Rankine cycle is employed for the gas turbine and industrial waste heat recovery applications. The waste heat recovery from a coke oven plant in an iron & steel industry is considered in this paper due to the high temperature of the waste heat and the technological expertise that exists in the author’s company, which has supplied over 50 steam turbines/ power blocks across India for various steel plants. An effective comparison between steam Rankine cycle and sCO2 Brayton cycle is attempted with the vast experience of steam power block technology and extending the high pressure-high temperature steam turbine design practices to the sCO2 turbine while also introducing the design of sCO2 compressor. The paper begins with an analysis of sCO2 cycles, their configurations for waste heat recovery and its comparison to a working steam cycle producing 15 MW net power in a coke oven plant. The sCO2 turbomachinery design follows from the boundary conditions imposed by the cycle and iterated with the cycle analysis for design point convergence. The design of waste heat recovery heat exchanger and other heat exchangers of the sCO2 cycle are not in the scope of this analysis. The design emphasis is on the sCO2 compressor and turbine that make up the power block. This paper highlights the design of a sCO2 compressor and turbine beginning from the specific speed-specific diameter (Ns-Ds) charts, followed by the meanline design. Subsequently, a detailed performance map is generated. The relevance of this paper is underscored by the first of a kind design and comparative analysis of a Brayton sCO2 power block with a working Steam Power block for the waste heat recovery in the energy intensive iron and steel industry.
APA, Harvard, Vancouver, ISO, and other styles
6

Wright, Steven A., Paul S. Pickard, Robert Fuller, Ross F. Radel, and Milton E. Vernon. "Supercritical CO2 Brayton Cycle Power Generation Development Program and Initial Test Results." In ASME 2009 Power Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/power2009-81081.

Full text
Abstract:
The DOE Office of Nuclear Energy and Sandia National Labs are investigating supercritical CO2 Brayton cycles as a potentially more efficient and compact power conversion system for advanced nuclear reactors, and other heat sources including solar, geothermal, and fossil or bio fuel systems. The focus of this work is on the supercritical CO2 Brayton cycle which has the potential for both high efficiency, in temperature range (400–750 C), and for reduced capital costs due to very compact turbomachinery. The cycle achieves high efficiency due to the non-ideal behavior of supercritical CO2, and it achieves extremely high power density because the fluid in the turbomachinery is very dense, 10%–60% the density of water. Sandia and its contractor Barber Nichols Inc. have fabricated and are operating a supercritical CO2 (S-CO2) compression test-loop to investigate the key technology issues associated with this cycle. The compression loop is part of a multi-year phased development program to develop a megawatt (MW) heater-class closed S-CO2 Brayton cycle to demonstrate the applicability of this cycle to heat sources above 400 C. Other portions of the program include modifications to the compression loop to operate it as a simple heated Brayton loop by adding a small turbine and a heater, but with no recuperator. The early testing of this simple Brayton cycle is under way. A more ambitious effort is currently constructing a recompression cycle Brayton loop (1) which is some times called a split-flow Brayton cycle. This cycle is used to increase the efficiency of the system by providing large amounts of recuperation using printed circuit heat exchangers. The re-compression (or split-flow) Brayton cycle is designed to operate at 1000 F (538 C) and produce up to 250 kWe with a 1.47″ OD radial compressor and a 2.68″ OD radial turbine. The current compression loop uses a main compressor that is identical to the main compressors in all the Brayton cycles that are being developed at Sandia. The key issues for the supercritical Brayton cycle include the fundamental issues of compressor fluid performance and system control near the critical point. Near the critical point very non ideal fluid behavior is observed which means that standard tools for analyzing compressor performance cannot be used. Thus one of the goals of the program is to develop data that can be used to validate the tools and models that are used to design the turbomachinery. Other supporting technology issues that are essential to achieving efficiency and cost objectives include bearing type, thrust load and thrust load balancing, bearing cooling, sealing technologies, and rotor windage losses. The current tests are providing the first measurements and information on these important supercritical CO2 power conversion system questions. Some of this data is presented in this report. In the testing to date, the turbomachinery has reached maximum speeds of 65,000 rpm, peak flow rates of over 9 lb/s and pressure ratios of just over 1.65. Compressor inlet fluid densities have been varied from 14% to 70% the density of water. Although the data from these tests are only the first results to be analyzed, they indicate that the basic design and performance predictions are sound. The loops have operated the turbo-compressor on the liquid and vapor side of the saturation curve, very near the critical point, above the critical point and even on the saturation dome. We have also operated the compressor near the choked flow regime and even in surge. At the current operating speeds and pressures, the observed performance map data agrees extremely well with the model predictions. These results have positive implications for the ultimate success of the S-CO2 cycle. In general the main compressor shows no adverse behavior while operating over a wide range of normal operating conditions. It operates reliably and with performance values that are very near the predicted results. Future efforts will focus on operating the Brayton cycle loop at sufficiently high temperatures that electrical power can be produced near the end of 2009. The compression-loop hardware is now the test bed for confirming the remaining parameters to support the next stage of development — which is the 1 MW heater-class split-flow or re-compressor Brayton cycle.
APA, Harvard, Vancouver, ISO, and other styles
7

Aboueata, Khaled Mahmoud, and Ahmad Khalaf Sleiti. "Flare Gas-to-Power using Supercritical CO2 Power Cycle: Energy and Exergy Analyses." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0049.

Full text
Abstract:
Generating electricity from power cycle using supercritical carbon dioxide (sCO2) as a working fluid is a step towards efficiency improvement in power production field. The huge amount of studies on this topic shows promising results of utilization from low to medium grade heat of power generation. Several layouts, arrangements, and thermodynamical features were presented to improve the performance of the power cycle. The main property of such a power cycle is that it utilizes wasted heat to produce electricity. One source of wasted heat is flared gas in oil and gas industry. Flaring process is considered as an extensive economic loss due to its high heating value. This flare gas is burned in industry due to several purposes, mainly safety and process needs. Utilization of flare gas in producing electricity through sCO2 cycle is being proposed in this research, where two cycles were proposed to study the performance of the cycle using flare gas as fuel. First, the Flare-to-Power sCO2 (FTP1- sCO2) cycle utilizing the flare gas mixed with natural gas to heat the working fluid of the cycle which sCO2. The second cycle (FTP2- sCO2) flare gas is utilized in reheating process for the exhaust flow of a primary heating working fluid. The performance of the cycles is evaluated by implementing energetic and exegetic analysis. The results of the study showed that FTP 1 has higher thermal and overall exergy efficiencies compared to FTP 2. Furthermore, the analysis showed that as maximum pressure increases thermal efficiency increase, the same behavior was found also while increasing T_max. The maximum thermal efficiency was found to be 44.87% at T_max= 850 C, P_h= 25 MPa, P_l= 3.3 MPa, T_min= 32 C, and m_flare=0.18 kg/s, for a 50 MW power capacity.
APA, Harvard, Vancouver, ISO, and other styles
8

Nassar, Abdul, Leonid Moroz, Maksym Burlaka, Petr Pagur, and Yuri Govoruschenko. "Designing Supercritical CO2 Power Plants Using an Integrated Design System." In ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8225.

Full text
Abstract:
The use of S-CO2 as working fluid in a power cycle has been growing in recent years due to associated benefits such as highly compact power plant and high cycle thermal efficiencies for application including waste heat, solar thermal and nuclear power plants. Many authors have presented studies on S-CO2 cycle and its modifications and there also exists many patents which claim different embodiments of the S-CO2 cycle for different heat sources. Each author of the S-CO2 cycle embodiment uses some specific tool to analyze the cycle performance with assumed values of component efficiencies. In the S-CO2 cycle the ratio of turbine work to compressor work is relatively small and its variation may cause a significant influence on cycle performance estimation accuracy. Exact prediction of the S-CO2 cycle performance requires defining exact turbomachinery efficiency magnitudes. However, S-CO2 turbines and compressors are in development stage except for several low power scale prototypes and hence it is very difficult to make assumptions on efficiency and they need to be designed. To enable design of cycle from concept to detailed design of the turbomachinery, the authors in this work have developed a flexible design system which is starting from heat balance calculation, continues with sizing of turbomachinery flow path, through 1D/2D/3D aero and structural multidisciplinary optimization. Such a design process is iterative because a refinement of the turbomachinery efficiencies lead to change in cycle boundary conditions for turbomachinery design and the design needs to be refined by recalculation of the cycle. In the present work, four different embodiments of S-CO2 thermodynamic cycles were analyzed using assumed component efficiencies and based on the actual design of the turbomachinery components the cycle was recalculated and accurate performance of the cycle was predicted. It is observed that the turbine efficiency has significant influence on the overall cycle performance compared to the compressor efficiency.
APA, Harvard, Vancouver, ISO, and other styles
9

Utamura, Motoaki. "Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50151.

Full text
Abstract:
Cycle characteristics of closed gas turbines using super critical carbon dioxide as a working fluid are investigated. It is found an anomalous behavior of physical properties of CO2 at pseudo-critical point may limit heat exchange rate of a regenerative heat exchanger due to the presence of pinch point inside the regenerative heat exchanger. Taking such pinch problem into consideration, the cycle efficiency of Brayton cycle is assessed. Its value is found limited to 39% degraded by 8% compared with the case without the pinch present inside. As an alternative a part flow cycle is investigated and its operable range has been identified. It is revealed that the part flow cycle is effective to recover heat transfer capability and may achieve the cycle thermal efficiency of 45% under maximum operating conditions of 20MPa and 800K. Optimal combination of turbine expansion ratio and a part flow ratio is 2.5 and 0.68 respectively. Parametric study is carried out. In neither compressor nor turbine, deteriorated adiabatic efficiency may affect cycle efficiency significantly. However, pressure drop characteristics of heat exchangers govern the cycle efficiency.
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Zijiang, Yann Le Moullec, Jinyi Zhang, and Yijun Zhang. "Dynamic modeling of 5 MWe supercritical CO2 recompression Brayton cycle." In SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2018. http://dx.doi.org/10.1063/1.5067089.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Supercritical CO2 power cycle"

1

Dogan, Omer N., Nathan Weiland, Peter A. Strakey, Seth A. Lawson, James Black, Gary A. Jesionowski, and Chris J. Gioia. Direct Supercritical CO2 Power Cycle Technology Research and Development: Technology Gaps and Research Needs. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1603329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wright, Steven Alan, Thomas M. Conboy, Ross F. Radel, and Gary Eugene Rochau. Modeling and experimental results for condensing supercritical CO2 power cycles. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1030354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, D., W. Yu, and D. M. France. High Efficiency Latent Heat Based Thermal Energy Storage System Compatible with Supercritical CO2 Power Cycle. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1575244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vasu, Subith. COMBUSTION KINETICS MODEL DEVELOPMENT & FLUID PROPERTY EXPERIMENTAL INVESTIGATION FOR IMPROVED DESIGN OF SUPERCRITICAL CO2 POWER CYCLE COMPONENTS. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1837889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Portnoff, Marc. TECHNOLOGY DEVELOPMENT FOR MODULAR, LOW-COST, HIGH-TEMPERATURE RECUPERATORS FOR SUPERCRITICAL CO2 POWER CYCLES. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1780676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Repukaiti, Richard, Lucas Teeter, Margaret Ziomek-Moroz, Omer Dogan, and Julie Tucker. Corrosion Behavior of Steels in Supercritical CO2 for Power Cycle Applications. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1423296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moore, Jeffrey. Development of Oxy-fuel Combustion Turbines with CO2 Dilution for Supercritical Carbon Dioxide (sCO2) Based Power Cycles - Phase I Topical Final Report. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1788074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pasch, James Jay, Thomas M. Conboy, Darryn D. Fleming, and Gary Eugene Rochau. Supercritical CO2 recompression Brayton cycle : completed assembly description. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1057248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wright, Steven Alan, Ross F. Radel, Milton E. Vernon, Paul S. Pickard, and Gary Eugene Rochau. Operation and analysis of a supercritical CO2 Brayton cycle. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/984129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

A. Nehrozoglu. ADVANCED CO2 CYCLE POWER GENERATION. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/883159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography