Journal articles on the topic 'Superconducting quantum devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superconducting quantum devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Fei-Fan, Zhao-Hua Yang, Shou-Kuan Zhao, Hai-Sheng Yan, Ye Tian, and Shi-Ping Zhao. "Fabrication of superconducting qubits and auxiliary devices with niobium base layer." Acta Physica Sinica 71, no. 5 (2022): 050303. http://dx.doi.org/10.7498/aps.71.20211865.
Full textShi, Wenbo, and Robert Malaney. "Entanglement of Signal Paths via Noisy Superconducting Quantum Devices." Entropy 25, no. 1 (January 12, 2023): 153. http://dx.doi.org/10.3390/e25010153.
Full textDhakal, Pashupati. "Superconducting Radio Frequency Resonators for Quantum Computing: A Short Review." Journal of Nepal Physical Society 7, no. 3 (December 31, 2021): 1–5. http://dx.doi.org/10.3126/jnphyssoc.v7i3.42179.
Full textSong, Chao, Jing Cui, H. Wang, J. Hao, H. Feng, and Ying Li. "Quantum computation with universal error mitigation on a superconducting quantum processor." Science Advances 5, no. 9 (September 2019): eaaw5686. http://dx.doi.org/10.1126/sciadv.aaw5686.
Full textCastellano, M. G. "Macroscopic quantum behavior of superconducting quantum interference devices." Fortschritte der Physik 51, no. 45 (May 7, 2003): 288–94. http://dx.doi.org/10.1002/prop.200310041.
Full textCHIARELLO, F., M. G. CASTELLANO, R. LEONI, G. TORRIOLI, C. COSMELLI, and P. CARELLI. "JOSEPHSON DEVICES FOR QUANTUM COMPUTING." International Journal of Modern Physics B 17, no. 04n06 (March 10, 2003): 675–79. http://dx.doi.org/10.1142/s021797920301642x.
Full textDe Luca, R. "Equivalent Single-Junction Model of Superconducting Quantum Interference Devices in the Presence of Time-Varying Fields." ISRN Condensed Matter Physics 2011 (November 30, 2011): 1–5. http://dx.doi.org/10.5402/2011/724384.
Full textPegrum, Colin. "Modelling high- Tc electronics." Superconductor Science and Technology 36, no. 5 (March 9, 2023): 053001. http://dx.doi.org/10.1088/1361-6668/acbb35.
Full textMutsenik, E., S. Linzen, E. Il’ichev, M. Schmelz, M. Ziegler, V. Ripka, B. Steinbach, G. Oelsner, U. Hübner, and R. Stolz. "Superconducting NbN-Al hybrid technology for quantum devices." Low Temperature Physics 49, no. 1 (January 2023): 92–95. http://dx.doi.org/10.1063/10.0016481.
Full textVettoliere, Antonio, and Carmine Granata. "Picoammeters Based on Gradiometric Superconducting Quantum Interference Devices." Applied Sciences 12, no. 18 (September 8, 2022): 9030. http://dx.doi.org/10.3390/app12189030.
Full textAhmad, Halima Giovanna, Caleb Jordan, Roald van den Boogaart, Daan Waardenburg, Christos Zachariadis, Pasquale Mastrovito, Asen Lyubenov Georgiev, et al. "Investigating the Individual Performances of Coupled Superconducting Transmon Qubits." Condensed Matter 8, no. 1 (March 21, 2023): 29. http://dx.doi.org/10.3390/condmat8010029.
Full textMarchiori, E., L. Ceccarelli, N. Rossi, G. Romagnoli, J. Herrmann, J. C. Besse, S. Krinner, A. Wallraff, and M. Poggio. "Magnetic imaging of superconducting qubit devices with scanning SQUID-on-tip." Applied Physics Letters 121, no. 5 (August 1, 2022): 052601. http://dx.doi.org/10.1063/5.0103597.
Full textMcRae, Corey Rae H., Gregory M. Stiehl, Haozhi Wang, Sheng-Xiang Lin, Shane A. Caldwell, David P. Pappas, Josh Mutus, and Joshua Combes. "Reproducible coherence characterization of superconducting quantum devices." Applied Physics Letters 119, no. 10 (September 6, 2021): 100501. http://dx.doi.org/10.1063/5.0060370.
Full textKoelle, D., R. Kleiner, F. Ludwig, E. Dantsker, and John Clarke. "High-transition-temperature superconducting quantum interference devices." Reviews of Modern Physics 71, no. 3 (April 1, 1999): 631–86. http://dx.doi.org/10.1103/revmodphys.71.631.
Full textSarnelli, E., C. Nappi, A. Leveratto, E. Bellingeri, V. Braccini, and C. Ferdeghini. "Fe(Se,Te) superconducting quantum interference devices." Superconductor Science and Technology 30, no. 6 (May 15, 2017): 065003. http://dx.doi.org/10.1088/1361-6668/aa6a84.
Full textRomeo, F., and R. De Luca. "Persistent currents in superconducting quantum interference devices." Physics Letters A 373, no. 15 (March 2009): 1383–86. http://dx.doi.org/10.1016/j.physleta.2009.02.013.
Full textTesta, G., C. Granata, C. Calidonna, C. Di Russo, M. Mango Furnari, S. Pagano, M. Russo, and E. Sarnelli. "Performance of asymmetric superconducting quantum interference devices." Physica C: Superconductivity 368, no. 1-4 (March 2002): 232–35. http://dx.doi.org/10.1016/s0921-4534(01)01172-8.
Full textTesta, G., E. Sarnelli, S. Pagano, C. R. Calidonna, and M. Mango Furnari. "Characteristics of asymmetric superconducting quantum interference devices." Journal of Applied Physics 89, no. 9 (May 2001): 5145–50. http://dx.doi.org/10.1063/1.1360219.
Full textVetlugin, Anton N., Cesare Soci, and Nikolay I. Zheludev. "Modeling quantum light interference on a quantum computer." Applied Physics Letters 121, no. 10 (September 5, 2022): 104001. http://dx.doi.org/10.1063/5.0103361.
Full textEsposito, Martina, Joseph Rahamim, Andrew Patterson, Matthias Mergenthaler, James Wills, Giulio Campanaro, Takahiro Tsunoda, et al. "Development and characterization of a flux-pumped lumped element Josephson parametric amplifier." EPJ Web of Conferences 198 (2019): 00008. http://dx.doi.org/10.1051/epjconf/201919800008.
Full textATALLAH, A. S., A. H. PHILLIPS, A. F. AMIN, and M. A. SEMARY. "PHOTON-ASSISTED TRANSPORT CHARACTERISTICS THROUGH QUANTUM DOT COUPLED TO SUPERCONDUCTING RESERVOIRS." Nano 01, no. 03 (November 2006): 259–64. http://dx.doi.org/10.1142/s179329200600029x.
Full textKatayama, Haruna, Toshiyuki Fujii, and Noriyuki Hatakenaka. "Theory of a quantum artificial neuron based on superconducting devices." International Journal of Engineering & Technology 7, no. 3.29 (August 24, 2018): 150. http://dx.doi.org/10.14419/ijet.v7i3.29.18546.
Full textVettoliere, A., R. Satariano, R. Ferraiuolo, L. Di Palma, H. G. Ahmad, G. Ausanio, G. P. Pepe, et al. "Aluminum-ferromagnetic Josephson tunnel junctions for high quality magnetic switching devices." Applied Physics Letters 120, no. 26 (June 27, 2022): 262601. http://dx.doi.org/10.1063/5.0101686.
Full textYan, Lu, Dong Ping, Xue Zheng-Yuan, and Cao Zhuo-Liang. "Quantum search via superconducting quantum interference devices in a cavity." Chinese Physics 16, no. 12 (December 2007): 3601–4. http://dx.doi.org/10.1088/1009-1963/16/12/008.
Full textChiarello, F. "Quantum computing with superconducting quantum interference devices: a possible strategy." Physics Letters A 277, no. 4-5 (December 2000): 189–93. http://dx.doi.org/10.1016/s0375-9601(00)00714-3.
Full textYi, H. R., Y. Zhang, J. Schubert, W. Zander, X. H. Zeng, and N. Klein. "Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices." Journal of Applied Physics 88, no. 10 (November 15, 2000): 5966–74. http://dx.doi.org/10.1063/1.1322382.
Full textNakayama, Akiyoshi, Takuma Sugio, Koji Manabe, and Yoichi Okabe. "Characteristics of superconducting quantum interference devices using multi-barrier superconducting junctions." Journal of Applied Physics 89, no. 11 (June 2001): 7499–501. http://dx.doi.org/10.1063/1.1359461.
Full textWaseem, Muhammad, Muhammad Irfan, and Shahid Qamar. "Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator." Physica C: Superconductivity 477 (July 2012): 24–31. http://dx.doi.org/10.1016/j.physc.2012.02.024.
Full textSaito, Atsushi, Katsuyoshi Hamasaki, and Takashi Ishiguro. "Fabrication and Quantum Phenomena of Superconducting Mesoscopic Devices." Materia Japan 38, no. 11 (1999): 880–87. http://dx.doi.org/10.2320/materia.38.880.
Full textHazra, D., J. R. Kirtley, and K. Hasselbach. "Nano-superconducting quantum interference devices with suspended junctions." Applied Physics Letters 104, no. 15 (April 14, 2014): 152603. http://dx.doi.org/10.1063/1.4871317.
Full textPedyash, M. V., D. H. A. Blank, and H. Rogalla. "Superconducting quantum interference devices based on YBaCuO nanobridges." Applied Physics Letters 68, no. 8 (February 19, 1996): 1156–58. http://dx.doi.org/10.1063/1.115708.
Full textTesta, G., S. Pagano, E. Sarnelli, C. R. Calidonna, and M. Mango Furnari. "Improved superconducting quantum interference devices by resistance asymmetry." Applied Physics Letters 79, no. 18 (October 29, 2001): 2943–45. http://dx.doi.org/10.1063/1.1413733.
Full textGallop, John, and Ling Hao. "Nanoscale Superconducting Quantum Interference Devices Add Another Dimension." ACS Nano 10, no. 9 (August 31, 2016): 8128–32. http://dx.doi.org/10.1021/acsnano.6b04844.
Full textRouse, R., Siyuan Han, and J. E. Lukens. "Flux amplification using stochastic superconducting quantum interference devices." Applied Physics Letters 66, no. 1 (January 2, 1995): 108–10. http://dx.doi.org/10.1063/1.114161.
Full textZhou, Yuchao W., Hao Li, Ethan Y. Cho, Han Cai, Guy Covert, and Shane A. Cybart. "Electronic Feedback System for Superconducting Quantum Interference Devices." IEEE Transactions on Applied Superconductivity 30, no. 7 (October 2020): 1–5. http://dx.doi.org/10.1109/tasc.2020.3006429.
Full textBrehm, Jan David, Richard Gebauer, Alexander Stehli, Alexander N. Poddubny, Oliver Sander, Hannes Rotzinger, and Alexey V. Ustinov. "Slowing down light in a qubit metamaterial." Applied Physics Letters 121, no. 20 (November 14, 2022): 204001. http://dx.doi.org/10.1063/5.0122003.
Full textWalsh, Evan D., Woochan Jung, Gil-Ho Lee, Dmitri K. Efetov, Bae-Ian Wu, K. F. Huang, Thomas A. Ohki, et al. "Josephson junction infrared single-photon detector." Science 372, no. 6540 (April 22, 2021): 409–12. http://dx.doi.org/10.1126/science.abf5539.
Full textZHAN, ZHIMING. "REALIZATION OF QUANTUM LOGIC GATES AND CLUSTER STATES WITH SUPERCONDUCTING QUANTUM-INTERFERENCE DEVICES." International Journal of Quantum Information 09, no. 01 (February 2011): 563–70. http://dx.doi.org/10.1142/s0219749911007423.
Full textPekola, Jukka P. "Quantum thermodynamics at low temperatures." Europhysics News 52, no. 3 (2021): 15–17. http://dx.doi.org/10.1051/epn/2021302.
Full textTarasov, Mikhail, Andrey Lomov, Artem Chekushkin, Mikhail Fominsky, Denis Zakharov, Andrey Tatarintsev, Sergey Kraevsky, and Anton Shadrin. "Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices." Nanomaterials 13, no. 13 (July 4, 2023): 2002. http://dx.doi.org/10.3390/nano13132002.
Full textAntony, Abhinandan, Martin V. Gustafsson, Anjaly Rajendran, Avishai Benyamini, Guilhem Ribeill, Thomas A. Ohki, James Hone, and Kin Chung Fong. "Making high-quality quantum microwave devices with van der Waals superconductors." Journal of Physics: Condensed Matter 34, no. 10 (December 21, 2021): 103001. http://dx.doi.org/10.1088/1361-648x/ac3e9d.
Full textEnrico, E., L. Croin, E. Strambini, and F. Giazotto. "Single charge transport in a fully superconducting SQUISET locally tuned by self-inductance effects." AIP Advances 12, no. 5 (May 1, 2022): 055122. http://dx.doi.org/10.1063/5.0084168.
Full textJiang, Junliang, Zishuo Li, Tingting Guo, Wenqu Xu, Xingyu Wei, Kaixuan Zhang, Tianshi Zhou, et al. "Building compact superconducting microwave resonators with Hilbert space-filling curves." Applied Physics Letters 121, no. 25 (December 19, 2022): 254001. http://dx.doi.org/10.1063/5.0128964.
Full textKurizki, Gershon, Patrice Bertet, Yuimaru Kubo, Klaus Mølmer, David Petrosyan, Peter Rabl, and Jörg Schmiedmayer. "Quantum technologies with hybrid systems." Proceedings of the National Academy of Sciences 112, no. 13 (March 3, 2015): 3866–73. http://dx.doi.org/10.1073/pnas.1419326112.
Full textGuo, Hao Min, Xin Hua Li, Zhi Fei Zhao, and Yu Qi Wang. "Tunable Ferromagnetism above Room-Temperature in Self-Assembled (In,Mn)As Diluted Magnetic Semiconductor Quantum Dots on Be-Doped AlxGa1-XAs Template by Molecular Beam Epitaxy." Advanced Materials Research 476-478 (February 2012): 793–98. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.793.
Full textZhao, Shou-Kuan, Zi-Yong Ge, Zhong-Cheng Xiang, Guang-Ming Xue, Hai-Sheng Yan, Zi-Ting Wang, Zhan Wang, et al. "Measuring Loschmidt echo via Floquet engineering in superconducting circuits." Chinese Physics B 31, no. 3 (March 1, 2022): 030307. http://dx.doi.org/10.1088/1674-1056/ac40f8.
Full textSun, Kuei, Zhi-qiang Bao, Wenlong Yu, Samuel D. Hawkins, John F. Klem, Wei Pan, and Xiaoyan Shi. "Charge transport spectra in superconductor-InAs/GaSb-superconductor heterostructures." Nanotechnology 33, no. 8 (December 2, 2021): 085703. http://dx.doi.org/10.1088/1361-6528/ac3a36.
Full textSuleiman, Mohammad, Martin F. Sarott, Morgan Trassin, Maria Badarne, and Yachin Ivry. "Nonvolatile voltage-tunable ferroelectric-superconducting quantum interference memory devices." Applied Physics Letters 119, no. 11 (September 13, 2021): 112601. http://dx.doi.org/10.1063/5.0061160.
Full textPolak, T. P., and E. Sarnelli. "Self-Induced Resonances in Asymmetric Superconducting Quantum Interference Devices." Acta Physica Polonica A 114, no. 1 (July 2008): 203–7. http://dx.doi.org/10.12693/aphyspola.114.203.
Full textKoch, R. H., C. P. Umbach, G. J. Clark, P. Chaudhari, and R. B. Laibowitz. "Quantum interference devices made from superconducting oxide thin films." Applied Physics Letters 51, no. 3 (July 20, 1987): 200–202. http://dx.doi.org/10.1063/1.98922.
Full text