Academic literature on the topic 'Superconducting quantum devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Superconducting quantum devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Superconducting quantum devices"
Su, Fei-Fan, Zhao-Hua Yang, Shou-Kuan Zhao, Hai-Sheng Yan, Ye Tian, and Shi-Ping Zhao. "Fabrication of superconducting qubits and auxiliary devices with niobium base layer." Acta Physica Sinica 71, no. 5 (2022): 050303. http://dx.doi.org/10.7498/aps.71.20211865.
Full textShi, Wenbo, and Robert Malaney. "Entanglement of Signal Paths via Noisy Superconducting Quantum Devices." Entropy 25, no. 1 (January 12, 2023): 153. http://dx.doi.org/10.3390/e25010153.
Full textDhakal, Pashupati. "Superconducting Radio Frequency Resonators for Quantum Computing: A Short Review." Journal of Nepal Physical Society 7, no. 3 (December 31, 2021): 1–5. http://dx.doi.org/10.3126/jnphyssoc.v7i3.42179.
Full textSong, Chao, Jing Cui, H. Wang, J. Hao, H. Feng, and Ying Li. "Quantum computation with universal error mitigation on a superconducting quantum processor." Science Advances 5, no. 9 (September 2019): eaaw5686. http://dx.doi.org/10.1126/sciadv.aaw5686.
Full textCastellano, M. G. "Macroscopic quantum behavior of superconducting quantum interference devices." Fortschritte der Physik 51, no. 45 (May 7, 2003): 288–94. http://dx.doi.org/10.1002/prop.200310041.
Full textCHIARELLO, F., M. G. CASTELLANO, R. LEONI, G. TORRIOLI, C. COSMELLI, and P. CARELLI. "JOSEPHSON DEVICES FOR QUANTUM COMPUTING." International Journal of Modern Physics B 17, no. 04n06 (March 10, 2003): 675–79. http://dx.doi.org/10.1142/s021797920301642x.
Full textDe Luca, R. "Equivalent Single-Junction Model of Superconducting Quantum Interference Devices in the Presence of Time-Varying Fields." ISRN Condensed Matter Physics 2011 (November 30, 2011): 1–5. http://dx.doi.org/10.5402/2011/724384.
Full textPegrum, Colin. "Modelling high- Tc electronics." Superconductor Science and Technology 36, no. 5 (March 9, 2023): 053001. http://dx.doi.org/10.1088/1361-6668/acbb35.
Full textMutsenik, E., S. Linzen, E. Il’ichev, M. Schmelz, M. Ziegler, V. Ripka, B. Steinbach, G. Oelsner, U. Hübner, and R. Stolz. "Superconducting NbN-Al hybrid technology for quantum devices." Low Temperature Physics 49, no. 1 (January 2023): 92–95. http://dx.doi.org/10.1063/10.0016481.
Full textVettoliere, Antonio, and Carmine Granata. "Picoammeters Based on Gradiometric Superconducting Quantum Interference Devices." Applied Sciences 12, no. 18 (September 8, 2022): 9030. http://dx.doi.org/10.3390/app12189030.
Full textDissertations / Theses on the topic "Superconducting quantum devices"
Baker, Luke James. "Superconducting nanowire devices for optical quantum information processing." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/8440/.
Full textJudge, Elizabeth Eileen. "Direct measurement of dissipative forces in superconducting BSCCO." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035957.
Full textAkram, Uzma. "Quantum interference and cavity QED effects in a V-system /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17140.pdf.
Full textKilian, Anton Theo. "3-Axis geomagnetic magnetometer system design using superconducting quantum interference devices." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86452.
Full textENGLISH ABSTRACT: This work discusses the design of a 3-axis Geomagnetometer SQUID System (GSS), in which HTS SQUIDs are used unshielded. The initial GSS installed at SANSA was fully operable, however the LN2 evaporation rate and SQUID orientation required improving. Magnetic shields were also developed in case the SQUIDs would not operate unshielded and to test the system noise with geomagnetic variations removed. To enable removing the double layer shield from the probes while the SQUIDs remain submerged in LN2, the shield was designed to disassemble. The shields proved to be effective, however due to icing the shields could not be removed without removing the SQUIDs from the LN2.
AFRIKAANSE OPSOMMING: Hierdie werk bespreek die ontwerp van 'n 3-as Geomagnetometer SQUID Sisteem (GSS), waarin HTS SQUIDs sonder magnetiese skilde aangedryf word. Die aanvanklike GSS geïnstalleer by SANSA was ten volle binnewerking, maar die LN2 verdamping en SQUID oriëntasie benodig verbetering. Magnetiese skilde was ook ontwikkel vir die geval dat die SQUIDs nie sonder skilde wou werk nie en om die ruis te toets na geomagnetiese variasies verwyder is. Die dubbele laag skild was ontwerp om uitmekaar gehaal te word terwyl die SQUIDs binne die LN2 bly. Die skild was doeltreffend, maar ys het verhoed dat die skild verwyder kon word vanaf die LN2 sonder om die SQUIDs ook te verwyder.
Abi-Salloum, Tony Y. Narducci L. M. "Interference between competing pathways in the interaction of three-level atoms and radiation /." Philadelphia, Pa. : Drexel University, 2006. http://dspace.library.drexel.edu/handle/1860%20/858.
Full textMarthaler, Michael [Verfasser], and G. [Akademischer Betreuer] Schön. "Study of Quantum Electrodynamics in Superconducting Devices / Michael Marthaler. Betreuer: G. Schön." Karlsruhe : KIT-Bibliothek, 2009. http://d-nb.info/1014099854/34.
Full textGraf, zu Eulenburg Alexander. "High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometers." Thesis, University of Strathclyde, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366689.
Full textEgger, Daniel J. [Verfasser], and Frank K. [Akademischer Betreuer] Wilhelm-Mauch. "Optimal control and quantum simulations in superconducting quantum devices / Daniel J. Egger. Betreuer: Frank K. Wilhelm-Mauch." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1060715961/34.
Full textPodd, Gareth James. "MicroSQUIDs with independently controlled Josephson junctions." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613267.
Full textOgunyanda, Kehinde. "A superconducting quantum interference device (SQUID) magnetometer for nanosatellite space weather missions." Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/1164.
Full textIn order to effectively determine the occurrences of space weather anomalies in near Earth orbit, a highly sensitive space-grade magnetometer system is needed for measuring changes in the Earth’s magnetic field, which is the aftermath of space weather storms. This research is a foundational work, aimed at evaluating a commercial-off-the-shelf (COTS) high temperature DC SQUID (superconducting quantum interference device) magnetometer, and establishing the possibility of using it for space weather applications. A SQUID magnetometer is a magnetic field measuring in strument that produces an electrical signal relative to the sensed external magnetic field intensity.
Books on the topic "Superconducting quantum devices"
Hadfield, Robert H., and Göran Johansson, eds. Superconducting Devices in Quantum Optics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24091-6.
Full text1939-, Barone Antonio, ed. Principles and applications of superconducting quantum interference devices. Singapore: World Scientific, 1992.
Find full text1934-, Weinstock Harold, and NATO Advanced Study Institute on SQUID Sensors: Fundamentals, Febrication, and Appliations (1995 : Acquafredda di Maratea, Italy), eds. SQUID sensors: Fundamentals, fabrication, and applications. Dordrecht: Kluwer Academic Publishers, 1996.
Find full text1930-, Hahlbohm H. D., and Lübbig H. 1932, eds. SQUID '85, superconducting quantum interference devices and their applications: Proceedings of the Third International Conference on Superconducting Quantum Devices, Berlin (West), June 25-28, 1985. Berlin: W. de Gruyter, 1985.
Find full textKeene, Mark Nicholas. The electrical and magnetic properties of superconducting quantum interference devices. Birmingham: University of Birmingham, 1988.
Find full textJ, Clarke, and Braginski A. I, eds. The SQUID handbook. Weinheim: Wiley-VCH, 2004.
Find full textL, Kautz R., and National Institute of Standards and Technology (U.S.), eds. SQUIDs past, present, and future: A symposium in honor of James E. Zimmerman. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Find full textHarrop, Sean Patrick. Magnetic noise properties of ceramic high temperature superconducting quantum interference devices. Birmingham: University of Birmingham, 1991.
Find full textVleeming, Bertus Johan. The four-terminal SQUID. [Leiden: University of Leiden, 1998.
Find full textFrancesco, De Martini, Denardo G. 1935-, Zeilinger Anton, International Centre for Theoretical Physics., International Atomic Energy Agency, and Unesco, eds. Proceedings of the Adriatico Workshop on Quantum Interferometry: 2-5 March 1993, Trieste, Italy. Singapore: World Scientific, 1994.
Find full textBook chapters on the topic "Superconducting quantum devices"
Rogalla, H., and C. Heiden. "High-Tc Josephson Contacts and Devices." In Superconducting Quantum Electronics, 80–127. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_4.
Full textAnnett, James F., Balazs L. Gyorffy, and Timothy P. Spiller. "Superconducting Devices for Quantum Computation." In Exotic States in Quantum Nanostructures, 165–212. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9974-0_5.
Full textPartanen, M., K. Y. Tan, S. Masuda, E. Hyyppä, M. Jenei, J. Goetz, V. Sevriuk, M. Silveri, and M. Möttönen. "Quantum-Circuit Refrigeration for Superconducting Devices." In 21st Century Nanoscience – A Handbook, 12–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351594-12.
Full textTinkham, M. "Superconducting Nanoparticles and Nanowires." In Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, 349–60. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4327-1_23.
Full textAverin, D. V. "Quantum Nondemolition Measurements of a Qubit." In International Workshop on Superconducting Nano-Electronics Devices, 1–10. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_1.
Full textCorato, Valentina, Carmine Granata, Luigi Longobardi, Maurizio Russo, Berardo Ruggiero, and Paolo Silvestrini. "Josephson Systems for Quantum Coherence Experiments." In International Workshop on Superconducting Nano-Electronics Devices, 33–41. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_5.
Full textTamura, Kentaro, and Yutaka Shikano. "Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 17–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_6.
Full textKorotkov, Alexander. "Bayesian Quantum Measurement of a Single-Cooper-Pair Qubit." In International Workshop on Superconducting Nano-Electronics Devices, 11–13. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_2.
Full textSemenov, Alexei D., Heinz-Wilhelm Hübers, Gregory N. Gol’tsman, and Konstantin Smirnov. "Superconducting Quantum Detector for Astronomy and X -Ray Spectroscopy." In International Workshop on Superconducting Nano-Electronics Devices, 201–10. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_22.
Full textCampagnano, G., D. Giuliano, and A. Tagliacozzo. "Josephson Versus Kondo Coupling at A Quantum Dot With Superconducting Contacts." In International Workshop on Superconducting Nano-Electronics Devices, 227–39. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_25.
Full textConference papers on the topic "Superconducting quantum devices"
Dumke, Rainer, Deshui Yu, Christoph Hufnagel, Alessandro Landra, and Lim Chin Chean. "Superconducting atom chips: towards quantum hybridization." In Quantum Photonic Devices, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2275929.
Full textHöpker, Jan Philipp, Moritz Bartnick, Evan Meyer-Scott, Frederik Thiele, Torsten Meier, Tim Bartley, Stephan Krapick, et al. "Towards integrated superconducting detectors on lithium niobate waveguides." In Quantum Photonic Devices, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2273388.
Full textNakamura, Y. "Engineering superconducting quantum circuits." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.e-1-01.
Full textJanicek, Frantisek, Anton Cerman, Milan Perny, Igor Brilla, Lubomir Marko, and Stefan Motycak. "Applications of superconducting quantum interference devices." In 2015 16th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2015. http://dx.doi.org/10.1109/epe.2015.7161204.
Full textPernice, Wolfram H. P., and Wladick Hartmann. "Cavity-enhanced superconducting single photon detectors (Conference Presentation)." In Quantum Photonic Devices 2018, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2323861.
Full textKandala, Abhinav. "Quantum computation with superconducting qubits." In 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.i-4-01.
Full textTong, Yukai, Changlong Zhu, Xueqian Wang, and Jing Zhang. "Controlling chaos in superconducting quantum interference devices." In 2017 36th Chinese Control Conference (CCC). IEEE, 2017. http://dx.doi.org/10.23919/chicc.2017.8027478.
Full textNersisyan, Ani, Eyob A. Sete, Sam Stanwyck, Andrew Bestwick, Matthew Reagor, Stefano Poletto, Nasser Alidoust, et al. "Manufacturing low dissipation superconducting quantum processors." In 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019. http://dx.doi.org/10.1109/iedm19573.2019.8993458.
Full textVan Duzer, T. "Single-flux-quantum logic." In Progress in High-Temperature Superconducting Transistors and Other Devices II. SPIE, 1992. http://dx.doi.org/10.1117/12.2321840.
Full textMorozov, Dmitry V., Gregor G. Taylor, Kleanthis Erotokritou, Shigehito Miki, Hirotaka Terai, and Robert H. Hadfield. "Mid-infrared photon counting with superconducting nanowires." In Quantum Nanophotonic Materials, Devices, and Systems 2021, edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. SPIE, 2021. http://dx.doi.org/10.1117/12.2597196.
Full textReports on the topic "Superconducting quantum devices"
Orlando, Terry P. Quantum Computation with Superconducting Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada480997.
Full textOrlando, T. P., J. E. Mooij, and Seth Lloyd. Quantum Computation With Mesoscopic Superconducting Devices. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada414413.
Full textOrlando, Terry P. Student Support for Quantum Computation With Superconducting Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada430138.
Full textHan, Siyuan. (DEPSCOR 99) Experimental Investigation of Superconducting Quantum Interference Devices as Solid State Qubits for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada416906.
Full textNordman, James E. Superconductive Electronic Devices Using Flux Quanta. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada310962.
Full textDrukier, A. K., N. Cao, and K. Carroll. Computer-Oriented, Multichannel, Direct-Current, Superconducting Quantum Interference Device. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada222636.
Full textNEOCERA INC COLLEGE PARK MD. High Temperature Superconductor (HTS) Superconducting QUantum Interference Device (SQUID) Microscope. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada285875.
Full textKinion, D. Development of a Quantum-Limited Microwave Amplifier using a dc Superconducting Quantum Interference Device (dc-SQUID). Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/1036875.
Full textMyers, Whittier Ryan. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/901227.
Full textKrauss, R. H. Jr, E. Flynn, and P. Ruminer. Experimental validation of superconducting quantum interference device sensors for electromagnetic scattering in geologic structures. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/532685.
Full text